

What is Thrust?

» High-Level Parallel Algorithms Library
» Parallel Analog of the C++ Standard Template Library (STL)
» Performance-Portable Abstraction Layer

» Productive way to program CUDA

Example

#include <thrust/host vector.h>
#include <thrust/device vector.h>
#include <thrust/sort.h>

#include <cstdlib>

int main (void)

{
// generate 32M random numbers on the host

thrust::host vector<int> h vec(32 << 20);
thrust::generate (h_vec.begin(), h vec.end(), rand);

// transfer data to the device
thrust: :device vector<int> d_vec = h_vec;

// sort data on the device
thrust::sort(d_vec.begin(), d vec.end());

// transfer data back to host
thrust::copy(d _vec.begin(), d vec.end(), h_vec.begin());

return O;

Easy to Use

» Distributed with CUDA Toolkit
= Header-only library
= Architecture agnostic

= Just compile and run!

$ nvcc -02 -arch=sm 20 program.cu -o program

Why should | use Thrust?

Productivity

= Containers
— host_vector

— devi ce_vector

* Memory Mangement

— Allocation

— Transfers

= Algorithm Selection

— Location is implicit

// allocate host vector with two elements
thrust::host vector<int> h vec(2);

// copy host data to device memory
thrust::device vector<int> d vec = h_vec;

// write device values from the host
d vec[0] = 27;
d vec[l] = 13;

// read device values from the host
int sum = d_vec[0] + d_vec[1];

// invoke algorithm on device
thrust::sort(d_vec.begin(), d vec.end());

// memory automatically released

Productivity

» L arge set of algorithms
— ~75 functions
— ~125 variations

= Flexible

— User-defined types
— User-defined operators

Algorithm Description

reduce Sum of a sequence

find First position of a value in a sequence
mismatch First position where two sequences differ
inner product Dot product of two sequences

equal Whether two sequences are equal

min_element

Position of the smallest value

count

Number of instances of a value

is_sorted

Whether sequence is in sorted order

transform reduce

Sum of transformed sequence

=
=
I
o
—
)
Q.
O
-
)
whd
=

Portability

= Support for CUDA, TBB and OpenMP

— Just recompile!
nvcc -DTHRUST DEVICE SYSTEM=THRUST HOST SYSTEM OMP

Backend System Options

Host Systems

THRUST HOST SYSTEM CPP
THRUST HOST SYSTEM OMP
THRUST HOST SYSTEM TBB

Device Systems

THRUST DEVICE SYSTEM CUDA
THRUST DEVICE SYSTEM OMP
THRUST DEVICE SYSTEM TBB

Multiple Backend Systems

* Mix different backends freely within the same app

thrust: :omp: :vector<float> my omp vec(100) ;
thrust::cuda::vector<float> my cuda vec(100);

// reduce in parallel on the CPU
thrust: :reduce (my omp vec.begin(), my omp vec.end())

// sort in parallel on the GPU
thrust::sort(my cuda vec.begin(), my cuda vec.end())

Potential Workflow

:|> Application

} Bottleneck

} Optimized Code

Performance Portability

[Radix Sort Merge Sort

Performance Portability

Posted by timothy on Sunday August 29, (
from the quick-like-double-time dept.

An anonymous reader writes

Researchers at the University of Virginia have recently open sourced an algorithm capable of sorting at a rate of one billior ' ’
L
(integer) Keys per ¢ g i

. Although GPUs are often assumed to be poorly suited for algorithms like sorting, their
results are several times faster than the best known CPU-based sorting implementations.”

Read More... Ki comments
+ = Your Rights Online: Network Neutrality Is Law In Chile

Posted by timothy on Sunday August 29, @07:25PM
from the muy-bien-tal-vez dept.

An anonymous reader writes

"Chile is the first country of the world [, according to the

Extensibility

= Customize temporary allocation
» Create new backend systems
* Modify algorithm behavior

= New in Thrust v1.6

Robustness

= Reliable
— Supports all CUDA-capable GPUs

» Well-tested
— ~850 unit tests run daily

= Robust
— Handles many pathological use cases

Openness

= Open Source Software
— Apache License
— Hosted on GitHub

* Welcome to
— Suggestions
— Criticism
— Bug Reports
— Contributions

thrust.github.com

Get Started Documentation Community Get Thrust

What is Thrust?

Thrustis a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-
level interface greatly enhances programmer productivity while enabling performance portability between GPUs
and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP)
facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!

Recent News

Thrust v1.6.0 release (07 Mar 2012)
Thrust v1.5.1 release (30 Jan 2012)
Thrust v1 release (28 Nov 2011)
Thrust v1.3.0 release (05 Oct 2010)
Thrust v1.2.1 release (29 Jun 2010)
Thrust v1.2.0 release (23 Mar 2010)
Thrust v1 release (09 Oct 2009)
Thrust v1.0.0 release (26 May 2009)

View all news »

Examples

Thrust is best explained through examples. The following source code generates random numbers serially and
then transfers them to a parallel device where they are sorted.

Resources

thrust.github.com
* Documentation [N ——

What is Thrust?

Thrustis a parallel algorithms library which resembles the C++ Standard Template Library (STL). Thrust's high-
H level interface greatly enhances programmer productivity while enabling performance portability between GPUs
Xa I I l p eS and multicore CPUs. Interoperability with established technologies (such as CUDA, TBB, and OpenMP)

facilitates integration with existing software. Develop high-performance applications rapidly with Thrust!

Recent News

Thrust v1.6.0 release (07 Mar 2012)

Thrust v1.5.1 release (30 Jan 2012)

° [o Thrust v1 release (28 Nov 2011)

] Ma'l l'l n L'I St Thrust v1.3.0 release (05 Oct 2010)
Thrust v1.2.1 release (29 Jun 2010)

Thrust v1.2.0 release (23 Mar 2010)

Thrust v1 release (09 Oct 2009)
Thrust v1.0.0 release (26 May 2009)

View all news »

Examples

L]
= Webinars s bestaxpe -
Thrust is best explained through examples. The following source code generates random numbers serially and

then transfers them to a parallel device where they are sorted.

= Publications

Thrust by Exampl\'r\‘ / 2

-

BEST PRACTICES

Simplified View of a GPU

Best Practices

* [n general
— Many applications are limited by memory bandwidth

» Best Practices
— Fusion
= Combined related operations together

— Structure of Arrays

= Ensure memory coalescing

— Implicit sequences

» Eliminate memory accesses and storage

o . 2
Fusion: Sum of squares) x;

struct square { _ device ~ host float operator() (float xi) { return xi*xi; } };

float sum of squares(const thrust::device vector<float> &x)

{

size t N = x.size();
thrust::device vector<float> x squared(N); // Temporary storage: N eclements.

// Compute x72: N reads + N writes.
thrust::transform(x.begin(), x.end(), x_squared.begin(), square());

// Compute the sum of x*2s: N + k reads + k+l1 writes (k is a small constant).
return thrust::reduce(x_squared.begin(), x squared.end());

transform reduce

1 read
from CPU

Fusion

= Combined related operations together

float fused sum of squares(const thrust::device vector<float> &x)

{

// Compute the x*2s and their sum: N + k reads + k+l1 writes (k is a small constant).
return thrust::reduce (

thrust: :make transform iterator(x.begin(), square()),
thrust: :make transform iterator(x.end(), square())) ;

transform reduce

We save:
N reads « N temporary storage (x_squared)
“ « N writes (to x_squared)
* N reads (from x_squared)
k reads
k+1 writes
1 read
from CPU

CORES

Device

Structure of Arrays

" struct Float3 { float x, y, z; };, H¥HE
= Array of 32 Float3: Float3[32] (32 Float3 = 32x12B = 384B)

< 1 memory load = 128B (involves 32 threads) >

memory: [IHETHETENIENTERIEEIEEIERTENTNME
HEENEENEEN NN N EENEENEENEENEE
FEENEENEENEENEENEENEENEENEENEEYm

» Load the 32 x: 3 x 128B. Same for y and z = 3x3x128B = 1.125KB (only 384B needed)!

EENERETEENEETEETEEREETEREE TN NN Load 1288 (only 44B needed)
TEEEENEETEENERETEREEENRENNNNE NN Load 1288 (only 44B needed)
SHEEEEENEETEEEEENEETEEERE NN N Load 1288 (only 40B needed)

'GPUs based on Fermi and Kepler architectures have L1-cache to help here.

Structure of Arrays

= Group Xs, ys and zs

struct StructOfFloats
{

thrust: :device vector<float> x;
thrust: :device vector<float> y;
thrust: :device vector<float> z;

};

ANEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

ANEEEEEEEEEEEEEEEEEEEEEEEEEEEEEm

ANEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE
= Load x: 1 x 128B. Same for y and z = 3x128B = 384B (all needed)

Structure of Arrays

» Example: Scale a sequence of Float3

struct scale

{
typedef thrust::tuple<float, float, float> Float3;

float s;
scale(float s) : s(s) {}
__host ~ device__ Float3 operator() (Float3 t)

{
float x = thrust::get<0>(t)
float y = thrust::get<1>(t);
float z = thrust::get<2>(t),
return thrust::make tuple(s*x, s*y, s*z);

};

thrust::transform(
thrust: :make zip iterator(thrust::make tuple(x.begin(), y.begin(), z.begin())),
thrust: :make zip iterator(thrust::make tuple(x.end(), y.end(), z.end())),

thrust: :make zip iterator(thrust::make tuple(x.begin(), y.begin(), z.begin())),
scale(2.0f));

Implicit Sequences

» Often we need ranges following a sequential pattern

— Constant ranges
=[1, 1,1, 1, ...]

— Incrementing ranges
= [0, 1, 2, 3, ...]
» |[mplicit ranges require no storage
— thrust::constant iterator

— thrust: :counting iterator

EXAMPLES

Processing Rainfall Data

day [0 0 1 2 5 5
site [2 3 0] 1 1 2
measurement [9 5 6 3 3 8

Notes
1) Time series sorted by day
2) Measurements of zero are excluded from the time series

6 6
0 1
2 6

OODNd

o R

Storage Options

» Array of structures

struct Sample
{

int day;

int site;

int measurement;
};

thrust::device vector<Sample> data;

= Structure of arrays (Best Practice)

struct Data
{
thrust: :device vector<int> day;
thrust: :device vector<int> site;
thrust: :device vector<int> measurement;
};
Data data;

Number of Days with Any Rainfall

int compute number of days with rainfall (const Data &data)
{

return thrust::inner product(data.day.begin(), data.day.end() - 1,
data.day.begin() + 1,
1,
thrust: :plus<int>(), // + functor
thrust::not equal to<int>()); // * functor

day [0

day shifted [0

[O= 1= 1= 1= 0=+ 1=+ 0=+1=1 ...]-1

inner product(x,y) = x[0]*y[0] + x[1]*y[1l] + x[2]*y[2] + ...

Total Rainfall at Each Site

template <typename Vector>
void compute total rainfall per site(const Data &data, Vector &site, Vector &measurement)

{
// Copy data to keep the original data as it is.
Vector tmp site(data.site), tmp measurement (data.measurement) ;

// Sort the “pairs” (site, measurement) by increasing value of site.
thrust::sort by key(tmp site.begin(), tmp site.end(), tmp measurement.begin());

// Reduce measurements by site (Assumption: site/measurement are big enough).

thrust: :reduce by key(tmp site.begin(), tmp site.end(), tmp measurement.begin(),
site.begin(),
measurement.begin()) ;

tmp site O—) 1=1=1= 1 2=2 =2 3 ...]
tmp measurement [6 = 2 3%+ 34+ 64+ 10 9 <48 +45 5 ... 1]
site [0 1 2 3 ... 1]

measurement [8 22 22 5

.
.
.
A

Number of Days where Rainfall Exceeded 5

using namespace thrust::placeholders;

int count_days where rainfall exceeded 5(const Data &data)

{

size_t N = compute number of days with rainfall (data);

thrust: :device vector<int> day(N);
thrust: :device vector<int> measurement (N) ;

thrust: :reduce by key (
data.day.begin (), data.day.end(),
data.measurement.begin(),
day.begin(),
measurement.begin()) ;

return thrust::count if (measurement.begin(), measurement.end(), _1 > 5);

struct greater_ than

{

> 5 “ int threshold;
- greater than(int threshold) : threshold(threshold) ({}
device __host bool operator() (int i) { return i > threshold; }

};

First Day where Total Rainfall Exceeded 32

int find first day where total rainfall exceeded 32 (const Data &data)

{

// Allocate memory to store the prefix sums of measurement.
thrust::device vector<int> sums(data.measurement.size())

// Compute prefix sums.
thrust::inclusive scan(data.measurement.begin(), data.measurement.end(), sums.begin());

// Find the 1%t day using a binary search (prefix sums are sorted - by definition).
int day = thrust::lower bound(sums.begin(), sums.end(), 33) - sums.begin();

// Get the day.
return data.day[day];

lower bound(... , 33)
day [0 0 1 2 5 5 6 6 71 8 ...1

measurement [9 5 () 3 3 8 2 () 5 10 ...]
sums [9 14 20 23 26 34 36 42 47 57 ...]

Sort Unsorted Input

day [O
site [2
measurement [9

day [0
site P
measurement [9

o N O

o wo

1 6
0 o0
6 2
Sort by
1 2
0 1
6 3

1

1

N J

nd site

N On

=

o O

w o

=

Sort Unsorted Input

struct day site_cmp

{
template <typename TupleO, typename Tuplel>

__device ~_ host__ bool operator() (const Tuple0 &t0O, const Tuplel &tl)
{

int day0 = thrust::get<0>(t0);

int dayl = thrust::get<0>(tl);

int site0 thrust: :get<1>(t0) ;
int sitel = thrust::get<1>(tl);

return day0 < dayl || (day0 == dayl && siteO < sitel);

void sort data(Data &data)
{
thrust: :sort by key(
thrust: :make zip iterator (thrust::make tuple(data.day.begin(), data.site.begin())),
thrust: :make zip iterator (thrust::make tuple(data.day.end(), data.site.end())),
data.measurements.begin(),
day site cmp());

Sort Unsorted Input (Faster)

= 40M elements sorted on a Tesla M2090:

void sort data(Data &data) — 1t version: 990.76ms

{ .
thrust: :device vector<int64> tmp (data.day.size()); — 2" version: 131.05ms

// Pack (day, site) pairs into 64-bit integers.

thrust: :transform(
thrust: :make zip iterator (thrust::make tuple(data.day.begin(), data.site.begin())),
thrust: :make zip iterator (thrust::make tuple(data.day.end(), data.site.end())),
tmp.begin(),
pack());

// Sort using the 64-bit integers as keys.
thrust::sort by key(tmp.begin(), tmp.end(), data.measurement.begin())

// Unpack (day, site) pairs from 64-bit integers.
thrust: :transform(
tmp.begin(),
tmp.end(),
thrust: :make zip iterator (thrust::make tuple(data.day.begin(), data.site.begin())),
unpack()) ;

Thrust in the CUDA Toolkit

» http://developer.nvidia.com/cuda-downloads

LogIn | Feedback | Mew Account
A DEVELOPER
NVIDIA ZONE searcn |

DEVELOPER CENTERS TECHMNOLOGIES TOOLS RESOURCES COMMUNITY

QUICKLINKS

The WVIDIA Registered Deve

Program

CUDA Mewsletter
CUDA Downloads

CUDA GPUs

Get Started - Parallel Computing

CUDA Spotlights
CUDA Tools & Ecosystem

Thrust in GPU Computing Gems

G PU S

COMPUTING GEMS ’ .
Jade Edition Thrust: A

Productivity-Oriented
Library for CUDA

Nathan Bell and Jared Hoberock

demonstrates how to leverage the Thrust parallel template library to implement high-
> applications with minimal programming effort. Based on the C++ Standard Template
s a famili high-level interface to the m of GPU Computing while
roperable with the rest of the CUDA software eco tem. Applications written

lab/ ind efficient

MOTIVATION

With the introduction of CUDA C/C++, developers can harness the massive parallelism of the GPU
thro v standard § language. CUDA allows svelopers to make fine-grained des
about how computation decomposed into parallel threads and executed on the device. The
of control offered by CUDA ‘4 (henceforth CUDA C) is an important feature: it facilita
development of high-performance srithms for a variety of computationally demanding tasks
(1) merit nificant optimization and (2) profit from low control of the mapping onto hardware
For this class of computational tasks CUDA C is an excellent solution.

Thrust [1] solves a complementary set of problems, namely those that are (1) implemented effi
ciently without a detailed mapping of work onto the target architecture or those that (2) do not merit

WEN'ME| HWU mply will not receive nization effort by the user. With Thrust, developers describe

- p 3 6 their computation ng a cc « f g rorithms and completely delegate the de
editor-in-chief of how to implement the computa » library. This abstract interface allows pre

describe what to compute without placing any additional restrictio n how to carry out th

I ATRATS or's o v < < on 1o

Thrust on Google Code

= Quick Start Guide

What is Thrust?

= Examples

. T 1

Examples

T

= News

= Documentation

= Mailing List (thrust-users)

Sort Unsorted Input (Faster)

struct pack

{
template <typename Tuple>

__device ~ host int64 operator() (const Tuple &t)
{
return (static_cast<int64>(thrust::get<0>(t)) << 32) | thrust::get<l>(t);

}s

struct unpack
{
__device
{
int d = static cast<int>(p >> 32);
int s = static cast<int>(p & Oxffffffff);
return thrust::make tuple(d, s);

__host thrust::tuple<int,int> operator () (int64 p)

Total Rainfall at a Given Site

struct one_site_measurement

{

int site;
one_site measurement (int site) : site(site) {}
__host ~ device_ int operator() (thrust::tuple<int,int> t)
{
if(thrust::get<0>(t) == site)
return thrust::get<1>(t);
else
return O;

};

int compute_ total rainfall at one site(int i, const Data &data)
{
// Fused transform-reduce (best practice).
return thrust::transform reduce (
thrust::make zip iterator (thrust::make tuple(data.site.begin(), data.measurement.begin())),

thrust::make zip iterator (thrust::make tuple(data.site.end(), data.measurement.end())),
one_site measurement (i),
0,

thrust: :plus<int>());

Total Rainfall Between Given Days

int compute_total rainfall between days(int first day, int last_day, const Data &data)

{

// Search first day/last day using binary searches.

int first = thrust::lower bound(data.day.begin(), data.day.end(), first day) -
data.day.begin() ;

int last = thrust::upper bound(data.day.begin(), data.day.end(), last_day) -
data.day.begin() ;

// Reduce the measurements between the two bounds.
return thrust::reduce(data.measurement.begin() + first, data.measurement.begin() + last);

lower bound(... , 2) upper_bound(... , 6)
day [0 0] 1 2 5 5 6 () 7 8 ...]

measurement [9 5 6 3 3 8 2 () 5 10 ...]

