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Goals of this Talk 

• Two-fold: 
– Describe how hardware operates 
– Show how hw operation translates to optimization advice 

• Previous years’ GTC Optimization talks had a different focus: 
– Show how to diagnose performance issues 
– Give optimization advice 

• For a full complement of information, check out: 
– GTC 2010, GTC 2012 optimization talks 
– GTC 2013 profiling tool sessions: 

• S3046, S3011 
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Outline 

• Thread (warp) execution 

• Kernel execution 

• Memory access 

• Required parallelism 
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Requirements to Achieve Good GPU Performance 

• In order of importance: 

– Expose Sufficient Parallelism 

– Efficient Memory Access 

– Efficient Instruction Execution 
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Thread/Warp Execution 
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SIMT Execution 

• Single Instruction Multiple Threads 

– An instruction is issued for an entire warp 

• Warp = 32 consecutive threads 

– Each thread carries out the operation on its own 
arguments 
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Warps and Threadblocks 

• Threadblocks can be 1D, 2D, 3D 
– Dimensionality of thread IDs is purely a programmer convenience 
– HW “looks” at threads in 1D 

• Consecutive 32 threads are grouped into a warp 
– 1D threadblock: 

• Warp 0: threads 0...31 
• Warp 1: threads 32...63 

– 2D/3D threadblocks 
• First, convert thread IDs from 2D/3D to 1D: 

– X is the fastest varying dimension, z is the slowest varying dimension 

• Then, same as for 1D blocks 

• HW uses a discrete number of warps per threadblock 
– If block size isn’t a multiple of warp size, some threads in the last warp are inactive 
– A warp is never split between different threadblocks 
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Say, 40x2 threadblock (80 “app” threads) 
   40 threads in x 
     2 rows of threads in y 



• Threadblocks can be 1D, 2D, 3D 
– Dimensionality of thread IDs is purely a programmer convenience 
– HW “looks” at threads in 1D 

• Consecutive 32 threads are grouped into a warp 
– 1D threadblock: 

• Warp 0: threads 0...31 
• Warp 1: threads 32...63 

– 2D/3D threadblocks 
• First, convert thread IDs from 2D/3D to 1D: 

– X is the fastest varying dimension, z is the slowest varying dimension 

• Then, same as for 1D blocks 

• HW uses a discrete number of warps per threadblock 
– If block size isn’t a multiple of warp size, some threads in the last warp are inactive 
– A warp is never split between different threadblocks 

Warps and Threadblocks 
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Say, 40x2 threadblock (80 “app” threads) 
   40 threads in x 
     2 rows of threads in y 
3 warps (92 “hw” threads) 
    1st (blue), 2nd (orange), 3rd (green) 
    note that half of the “green” warp isn’t used by the app 



Control Flow 

• Different warps can execute entirely different code 
– No performance impact due to different control flow 
– Each warp maintains its own program counter 

• If only a portion of a warp has to execute an operation 
– Threads that don’t participate are “masked out” 

• Don’t fetch operands, don’t write output 
– Guarantees correctness 

• They still spend time in the instructions (don’t execute something else) 

• Conditional execution within a warp 
– If at least one thread needs to take a code path, entire warp takes 

that path 
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Control Flow 
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if ( ... ) 
{ 
     // then-clause 
} 
else 
{ 
    // else-clause 
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Different Code Paths in Different Warps 
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Different Code Paths Within a Warp 
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Instruction Issue 

• Instructions are issued in-order 

– Compiler arranges the instruction sequence 

– If an instruction is not eligible, it stalls the warp 

• An instruction is eligible for issue if both are true: 

– A pipeline is available for execution 

• Some pipelines need multiple cycles to issue a warp 

– All the arguments are ready 

• Argument isn’t ready if a previous instruction hasn’t yet produced it 
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Latency Hiding 

• Instruction latencies: 
– Roughly 10-20 cycles (replays increase these) 
– DRAM accesses have higher latencies (400-800 cycles) 

• Instruction Level Parallelism (ILP) 
– Independent instructions between two dependent ones 
– ILP depends on the code, done by the compiler 

• Switching to a different warp 
– If a warp stalls for N cycles, having N other warps with eligible 

instructions keeps the SM going 
– Switching between concurrent warps has no overhead 

• State (registers, shared memory) is partitioned, not stored/restored 
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    FFMA R0, R43, R0, R4; 

    FFMA R1, R43, R4, R5; 

    FMUL R7, R9, R0; 

    FMUL R8, R9, R1; 

    ST.E [R2], R7; 

ILP: 2 
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Kepler Instruction Issue 

• GPU consists of some number of SMs 
– Kepler chips: 1-14 SMs 

• Each SM has 4 instruction scheduler units 
– Warps are partitioned among these units 
– Each unit keeps track of its warps and their eligibility to issue 

• Each scheduler can dual-issue instructions from a warp 
– Resources and dependencies permitting 
– Thus, a Kepler SM could issue 8 warp-instructions in one cycle 

• 7 is the sustainable peak 
• 4-5 is pretty good for instruction-limited codes 
• Memory- or latency-bound codes by definition will achieve much lower IPC 
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Kepler Instruction Issue 

• Kepler SM needs at least 4 warps 
– To occupy the 4 schedulers 
– In practice you need many more to hide instruction latency 

• An SM can have up to 64 warps active 
• Warps can come from different threadblocks and different concurent kernels 

– HW doesn’t really care: it keeps track of the instruction stream for each warp 

• For instruction limited codes: 
– No ILP: 40 or more concurrent warps per SM 

• 4 schedulers × 10+ cycles of latency 

– The more ILP, the fewer warps you need 

• Rough rule of thumb: 
– Start with ~32 warps for SM, adjust from there 

• Most codes have some ILP 
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CUDA Cores and the Number of Threads 

• Note that I haven’t mentioned CUDA cores till now 

– GPU core = fp32 pipeline lane (192 per Kepler SM) 

– GPU core definition predates compute-capable GPUs 

• Number of threads needed for good performance: 

– Not really tied to the number of CUDA cores 

– Need enough threads (warps) to hide latencies 
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GK110 SM Diagram 

• 192 fp32 lanes (cores) 
– fp32 math 
– Simple int32 math (add,min,etc.) 

• 64 fp64 lanes 
• 32 SFU lanes 

– Int32 multiplies, etc. 
– Transcendentals 

• 32 LD/ST lanes 
– GMEM, SMEM, LMEM accesses 

• 16 TEX lanes 
– Texture access 
– Read-only GMEM access 
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Kepler SM Instruction Throughputs 

• Fp32 instructions 
– Equivalent of “6 warps worth”of instructions per cycle (192 pipes) 
– Requires some dual-issue to use all pipes: 

• SM can issue instructions from 4 warps per cycle (4 schedulers/SM) 
• Without any ILP one couldn’t use more than 4*32=128 fp32 pipes 

• Fp64 pipelines 
– Number depends on a chip 
– Require 2 cycles to issue a warp 
– K20 (gk110) chips: 2 warps worth of instructions per cycle (64 pipes) 

• Memory access 
– Shared/global/local memory instructions 
– 1 warp per cycle 

• See the CUDA Programming Guide for more details (docs.nvidia.com) 
– Table “Throughput of Native Arithmetic Instructions” 
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Examining Assembly 

• Two levels of assembly 
– PTX: virtual assembly 

• Forward-compatible 
– Driver will JIT to machine language 

• Can be inlined in your CUDA C code 
• Not the final, optimized machine code 

– Machine language: 
• Architecture specific (not forward/backward compatible) 
• The sequence of instructions that HW executes 

• Sometimes it’s interesting to examine the assembly 
– cuobjdump utility 

• comes with every CUDA toolkit 
• PTX: cuobjdump -ptx <executable or object file> 
• Machine assembly: cuobjdump -sass <executable or object file> 

– Docs on inlining PTX and instruction set 
• Look in the docs directory inside the toolkit install for PDFs 

© 2013, NVIDIA 23 



Takeaways 

• Have enough warps to hide latency 
– Rough rule of thumb: initially aim for 32 warps/SM 

• Use profiling tools to tune performance afterwards 

– Don’t think in terms of CUDA cores 

• If your code is instruction throughput limited: 
– When possible use operations that go to wider pipes 

• Use fp32 math instead of fp64, when feasible 
• Use intrinsics (__sinf(), __sqrtf(), ...) 

– Single HW instruction, rather than SW sequences of instructions 
– Tradeoff: slightly fewer bits of precision 
– For more details: CUDA Programming Guide 

– Minimize different control flow within warps (warp-divergence) 
• Only an issue if large portions of time are spent in divergent code 
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Kernel Execution 
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Kernel Execution 

• A grid of threadblocks is launched 
– Kernel<<<1024,...>>>(...):  grid of 1024 threadblocks 

• Threadblocks are assigned to SMs 
– Assignment happens only if an SM has sufficient resources for the entire 

threadblock 
• Resources: registers, SMEM, warp slots 
• Threadblocks that haven’t been assigned wait for resources to free up 

– The order in which threadblocks are assigned is not defined 
• Can and does vary between architectures 

• Warps of a threadblock get partitioned among the 4 schedulers 
– Each scheduling unit keeps track of all its warps 
– In each cycle chooses an eligible warp for issue 

• Aims for fairness and performance 
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Concurrent Kernel Execution 

• General stream rules apply - calls may overlap if both are true: 
– Calls are issued to different, non-null streams 
– There is no synchronization between the two calls 

• Kernel launch processing 
– First, assign all threadblocks of the “current” grid to SMs 
– If SM resources are still available, start assigning blocks from the “next” grid 
– “Next”: 

• Compute capability 3.5: any kernel to a different stream that’s not separated with a sync 
• Compute capability <3.5: the next kernel launch in code sequence 

– An SM can concurrently execute threadblocks from different kernels 
– Limits on concurrent kernels per GPU: 

• CC 3.5: 32  
• CC 2.x: 16 
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Kernel Execution in High Priority Streams 

• Priorities require: 
– CC 3.5 or higher 
– CUDA 5.5 or higher 

• High-priority kernel threadblocks will be assigned to SMs as 
soon as possible 
– Do not preempt already executing threadblocks 

• Wait for these to finish and free up SM resources 

– “Pass” the low-priority threadblocks waiting to be assigned 

• Concurrent kernel requirements apply 
– Calls in the same stream still execute in sequence 
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CDP Kernel Execution 

• Same as “regular” launches, except cases where a GPU thread 
waits for its launch to complete 
– GPU thread: kernel launch, device or stream sync call later 
– To prevent deadlock, the parent threadblock: 

• Is swapped out upon reaching the sync call 
– guarantees that child grid will execute 

• Is restored once all child threadblocks complete 

– Context store/restore adds some overhead 
• Register and SMEM contents must be written/read to GMEM 

– In general:  
• We guarantee forward progress for child grids 
• Implementation for the guarantee may change in the future 

• A threadblock completes once all its child grids finish 
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Takeaways 

• Ensure that grids have sufficient threadblocks to occupy the 
entire chip 
– Grid threadblocks are assigned to SMs 
– Each SM partitions threadblock warps among its 4 schedulers 
– SM needs sufficient warps to hide latency 

• Concurrent kernels: 
– Help if individual grids are too small to fully utilize GPU 

• Executing in high-priority streams: 
– Helps if certain kernels need preferred execution 

• CUDA Dynamic Parallelism: 
– Be aware that a sync call after launching a kernel may cause a 

threadlbock state store/restore 

© 2013, NVIDIA 30 



Memory Access 
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Memory Optimization 

• Many algorithms are memory-limited 
– Most are at least somewhat sensitive to memory bandwidth 

– Reason: not that much arithmetic per byte accessed 
• Not uncommon for code to have ~1 operation per byte 

• Instr:mem bandwidth ratio for most modern processors is 4-10 
– CPUs and GPUs 

– Exceptions exist: DGEMM, Mandelbrot, some Monte Carlo, etc. 

• Optimization goal: maximize bandwidth utilization 
– Maximize the use of bytes that travel on the bus 

– Have sufficient concurrent memory accesses 
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Maximize Byte Use 

• Two things to keep in mind: 
– Memory accesses are per warp 
– Memory is accessed in discrete 

chunks  
• lines/segments 
• want to make sure that bytes 

that travel from DRAM to SMs 
get used 

– For that we should understand 
how memory system works 

 

• Note: not that different from CPUs 
– x86 needs SSE/AVX memory 

instructions to maximize performance 
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GPU Memory System 

© 2013, NVIDIA 34 

DRAM 

SM 

 
 

SM 

• All data lives in DRAM 

– Global memory 

– Local memory 

– Textures 

– Constants 

 



GPU Memory System 
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DRAM 

L2 

SM SM 

• All DRAM accesses go 
through L2 

• Including copies: 
– P2P 
– CPU-GPU 
 



GPU Memory System 
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DRAM 

L2 

SM 

L1 
Read 
only 

Const 

SM • Once in an SM, data 
goes into one of 3 
caches/buffers 

• Programmer’s choice 

– L1 is the “default” 

– Read-only, Const 
require explicit code 

 



Access Path 

• L1 path 
– Global memory 

• Memory allocated with cudaMalloc() 
• Mapped CPU memory, peer GPU memory 
• Globally-scoped arrays qualified with __global__ 

– Local memory 
• allocation/access managed by compiler so we’ll ignore 

• Read-only/TEX path 
– Data in texture objects, CUDA arrays 
– CC 3.5 and higher: 

• Global memory accessed via intrinsics (or specially qualified kernel arguments) 

• Constant path 
– Globally-scoped arrays qualified with __constant__ 
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Access Via L1 

• Natively supported word sizes per thread: 
– 1B, 2B, 4B, 8B, 16B 

• Addresses must be aligned on word-size boundary 

– Accessing types of other sizes will require multiple instructions 

• Accesses are processed per warp 
– Threads in a warp provide 32 addresses 

• Fewer if some threads are inactive 

– HW converts addresses into memory transactions 
• Address pattern may require multiple transactions for an instruction 

• If N transactions are needed, there will be (N-1) replays of the instruction 
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GMEM Writes 

• Not cached in the SM 
– Invalidate the line in L1, go to L2 

• Access is at 32 B segment granularity 

• Transaction to memory: 1, 2, or 4 segments 
– Only the required segments will be sent 

• If multiple threads in a warp write to the same address 
– One of the threads will “win” 

– Which one is not defined 
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Some Store Pattern Examples 

© 2013, NVIDIA 40 

... 
addresses from a warp one 4-segment transaction 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 



Some Store Pattern Examples 
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... 
addresses from a warp three 1-segment transactions 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 



Some Store Pattern Examples 
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addresses from a warp one 2-segment transaction 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 



Some Store Pattern Examples 

© 2013, NVIDIA 43 

addresses from a warp 2 1-segment transactions 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 



GMEM Reads 

• Attempt to hit in L1 depends on programmer choice and compute capability 
• HW ability to hit in L1: 

– CC 1.x: no L1 
– CC 2.x: can hit in L1 
– CC 3.0, 3.5: cannot hit in L1 

• L1 is used to cache LMEM (register spills, etc.), buffer reads 

• Read instruction types 
– Caching: 

• Compiler option: -Xptxas -dlcm=ca 
• On L1 miss go to L2, on L2 miss go to DRAM 
• Transaction: 128 B line 

– Non-caching: 
• Compiler option: -Xptxas -dlcm=cg 
• Go directly to L2 (invalidate line in L1), on L2 miss go to DRAM 
• Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes) 
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Caching Load 

• Scenario: 
– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 1 cache-line 
– No replays 
– Bus utilization: 100% 

• Warp needs 128 bytes 
• 128 bytes move across the bus on a miss 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

• Scenario: 
– Warp requests 32 aligned, consecutive 4-byte words 

• Addresses fall within 4 segments 
– No replays 
– Bus utilization: 100% 

• Warp needs 128 bytes 
• 128 bytes move across the bus on a miss 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 1 cache-line 
– No replays 
– Bus utilization: 100% 

• Warp needs 128 bytes 
• 128 bytes move across the bus on a miss 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 aligned, permuted 4-byte words 

• Addresses fall within 4 segments 
– No replays 
– Bus utilization: 100% 

• Warp needs 128 bytes 
• 128 bytes move across the bus on a miss 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

• Scenario: 
– Warp requests 32 consecutive 4-byte words, offset from perfect alignment 

• Addresses fall within 2 cache-lines 
– 1 replay (2 transactions) 
– Bus utilization: 50% 

• Warp needs 128 bytes 
• 256 bytes move across the bus on misses 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

... 
addresses from a warp 
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Non-caching Load 

• Scenario: 
– Warp requests 32 consecutive 4-byte words, offset from perfect alignment 

• Addresses fall within at most 5 segments 
– 1 replay (2 transactions) 
– Bus utilization: at least 80% 

• Warp needs 128 bytes 
• At most 160 bytes move across the bus 
• Some misaligned patterns will fall within 4 segments, so 100% utilization 
 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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... 
addresses from a warp 



Caching Load 

... 
addresses from a warp 

• Scenario: 
– All threads in a warp request the same 4-byte word 

• Addresses fall within a single cache-line 
– No replays 
– Bus utilization: 3.125% 

• Warp needs 4 bytes 
• 128 bytes move across the bus on a miss 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

addresses from a warp 

• Scenario: 
– All threads in a warp request the same 4-byte word 

• Addresses fall within a single segment 
– No replays 
– Bus utilization: 12.5% 

• Warp needs 4 bytes 
• 32 bytes move across the bus on a miss 

 

... 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Caching Load 

... 
addresses from a warp 

• Scenario: 
– Warp requests 32 scattered 4-byte words 

• Addresses fall within N cache-lines 
– (N-1) replays (N transactions) 
– Bus utilization:  32*4B / (N*128B) 

• Warp needs 128 bytes 
• N*128 bytes move across the bus on a miss 

 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 
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Non-caching Load 

addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 
Memory addresses 

0 

• Scenario: 
– Warp requests 32 scattered 4-byte words 

• Addresses fall within N segments 
– (N-1) replays (N transactions) 

• Could be lower some segments can be arranged into a single transaction 

– Bus utilization:  128 / (N*32)  (4x higher than caching loads) 
• Warp needs 128 bytes 
• N*32 bytes move across the bus on a miss 

 

... 
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Caching vs Non-caching Loads 

• Compute capabilities that can hit in L1 (CC 2.x) 
– Caching loads are better if you count on hits 

– Non-caching loads are better if: 
• Warp address pattern is scattered 

• When kernel uses lots of LMEM (register spilling) 

• Compute capabilities that cannot hit in L1 (CC 1.x, 3.0, 3.5) 
– Does not matter, all loads behave like non-caching 

• In general, don’t rely on GPU caches like you would on CPUs: 
– 100s of threads sharing the same L1 

– 1000s of threads sharing the same L2 
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L1 Sizing 

• Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM 
– Fermi GPUs (CC 2.x): 16:48, 48:16 
– Kepler GPUs (CC 3.x):16:48, 48:16, 32:32 

• Programmer can choose the split: 
– Default: 16 KB L1, 48 KB SMEM 
– Run-time API functions: 

• cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig() 

– Kernels that require different L1:SMEM sizing cannot run concurrently 

• Making the choice: 
– Large L1 can help when using lots of LMEM (spilling registers) 
– Large SMEM can help if occupancy is limited by shared memory 
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Read-Only Cache 

• An alternative to L1 when accessing DRAM 
– Also known as texture cache: all texture accesses use this cache 
– CC 3.5 and higher also enable global memory accesses 

• Should not be used if a kernel reads and writes to the same addresses 

• Comparing to L1: 
– Generally better for scattered reads than L1 

• Caching is at 32 B granularity (L1, when caching operates at 128 B granularity) 
• Does not require replay for multiple transactions (L1 does) 

– Higher latency than L1 reads, also tends to increase register use 

• Aggregate 48 KB per SM: 4 12-KB caches 
– One 12-KB cache per scheduler 

• Warps assigned to a scheduler refer to only that cache 

– Caches are not coherent – data replication is possible 
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Read-Only Cache Operation 

• Always attempts to hit 
• Transaction size: 32 B queries 
• Warp addresses are converted to queries 4 threads at 

a time 
– Thus a minimum of 8 queries per warp 
– If data within a 32-B segment is needed by multiple threads 

in a warp, segment misses at most once 

• Additional functionality for texture objects 
– Interpolation, clamping, type conversion 
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Read-Only Cache Operation 
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... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

1st Query 



Read-Only Cache Operation 
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... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

2nd Query 

1st Query 



Read-Only Cache Operation 
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... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

1st Query 



Read-Only Cache Operation 
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... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

2nd and 3rd Queries 

1st Query 



Read-Only Cache Operation 
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... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

... 
addresses from a warp 

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0 

2nd and 3rd Queries 

1st Query 

Note this segment was already requested in the 1st query: 
cache hit, no redundant requests to L2 



Accessing GMEM via Read-Only Cache 

• Compiler must know that addresses read are not also 
written by the same kernel 

• Two ways to achieve this 

– Intrinsic: __ldg() 

– Qualify the pointers to the kernel 

• All pointers: __restrict__ 

• Pointers you’d like to dereference via read-only cache: const __restrict__ 

• May not be sufficient if kernel passes these pointers to functions 
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__global__ void kernel( int *output,  
 int *input ) 
{ 
     ... 
     output[idx] = ... + __ldg( &input[idx] ); 
} 



• Compiler must know that addresses read are not also 
written by the same kernel 

• Two ways to achieve this 

– Intrinsic: __ldg() 

– Qualify the pointers to the kernel 

• All pointers: __restrict__ 

• Pointers you’d like to dereference via read-only cache: const __restrict__ 

• May not be sufficient if kernel passes these pointers to functions 

Accessing GMEM via Read-Only Cache 
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__global__ void kernel( int*__restrict__ output, 
 const int* __restrict__ input ) 
{ 
     ... 
     output[idx] = ... + input[idx]; 
} 



Additional Texture Functionality 

• All of these are “free” 
– Dedicated hardware 
– Must use CUDA texture objects 

• See CUDA Programming Guide for more details 
• Texture objects can interoperate graphics (OpenGL, DirectX) 

• Out-of-bounds index handling: clamp or wrap-around 
• Optional interpolation 

– Think: using fp indices for arrays 
– Linear, bilinear, trilinear 

• Interpolation weights are 9-bit 

• Optional format conversion 
– {char, short, int, fp16} -> float 
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Examples of Texture Object Indexing 
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Index Clamp: 

0     1     2     3     4 

1 

2 

3 

0 
(5.5, 1.5) 

1 

2 

3 

0 
(2.5, 0.5) 
(1.0, 1.0) 

0     1     2     3     4 

1 

2 

3 

0 
(5.5, 1.5) 

0     1     2     3     4 

Index Wrap: 

Integer indices fall between elements 
Optional interpolation: 
    Weights are determined by coordinate distance  



Constant Cache 

• The 3rd alternative DRAM access path 
• Also the most restrictive: 

– Total data for this path is limited to 64 KB 
• Must be copied into an array qualified with __constant__ 

– Cache throughput: 4 B per clock per SM 
• So, unless the entire warp reads the same address, replays are needed 

• Useful when: 
– There is some small subset of data used by all threads 

• But it gets evicted from L1/Read-Only paths by reads of other data 

– Data addressing is not dependent on thread ID 
• Replays are expensive 

• Example use: FD coefficients 
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// global scope: 
__constant__ float coefficients[16]; 
... 
 
// in GPU kernel code: 
deriv = coefficients[0] * data[idx] + ... 
... 
 
// in CPU-code: 
cudaMemcpyToSymbol( coefficients, ... ) 



Address Patterns 

• Coalesced address pattern 
– Warp utilizes all the bytes that move across the bus 

• Suboptimal address patterns 
– Throughput from HW point of view is significantly higher than from app point 

of view 
– Four general categories: 

1)  Offset (not line-aligned) warp addresses 
2)  Large strides between threads within a warp 
3)  Each thread accesses a contiguous region (larger than a word) 
4)  Irregular (scattered) addresses 

 
See GTC 2012 “GPU Performance Analysis and Optimization” (session S0514) for details on 

diagnosing and remedies.  Slides and video: 
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=#1450 
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Case Study 1: Contiguous Region per Thread 

• Say we are reading a 12-byte structure per thread 
– Non-native word size 
 

struct Position 
{ 
 float x, y, z; 
}; 
... 
__global__ void kernel( Position *data, ... ) 
{ 
 int idx = blockIdx.x * blockDim.x + threadIdx.x; 
 Position temp = data[idx]; 
 ... 
} 

 

© 2012, NVIDIA 72 



Case Study 1: Non-Native Word Size 

• Compiler converts temp = data[idx] into 3 loads: 

– Each loads 4 bytes 

– Can’t do an 8 and a 4 byte load: 12 bytes per element 
means that every other element wouldn’t align the 8-
byte load on 8-byte boundary 

• Addresses per warp for each of the loads: 

– Successive threads read 4 bytes at 12-byte stride 

© 2012, NVIDIA 73 



Case Study 1: 1st Load Instruction 
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4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 

32 B memory transaction 



Case Study 1: 2nd Load Instruction 
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4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 



Case Study 1: 3rd Load Instruction 
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4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32 

addresses from a warp 

... 



Case Study 1: Performance and Solutions 

• Because of the address pattern, SMs end up requesting 3x 
more bytes than application requests 
– We waste a lot of bandwidth 

• Potential solutions: 
– Change data layout from array of structures to structure of arrays 

• In this case: 3 separate arrays of floats 
• The most reliable approach (also ideal for both CPUs and GPUs) 

– Use loads via read-only cache (LDG) 
• As long as lines survive in the cache, performance will be nearly optimal 
• Only available in CC 3.5 and later 

– Stage loads via shared memory (SMEM) 

© 2012, NVIDIA 77 



Case Study 1: Speedups for Various Solutions 

• Kernel that just reads that data: 
– AoS (float3): 1.00 
– LDG: 1.43 
– SMEM: 1.40 
– SoA: 1.51 

• Kernel that just stores the data: 
– AoS (float3): 1.00 
– LDG: N/A (stores don’t get cached in SM) 
– SMEM: 1.88 
– SoA: 1.88 

• Speedups aren’t 3x because we are hitting in L2 
– DRAM didn’t see a 3x increase in traffic 
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Maximize Memory Bandwidth Utilization 

• Maximize the use of bytes that travel on the bus 

– Address pattern 

• Have sufficient concurrent memory accesses 

– Latency hiding 
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Optimizing Access Concurrency 

• Have enough concurrent accesses to saturate the bus 
– Little’s law: need latency × bandwidth bytes in flight 

 

• Ways to increase concurrent accesses: 
– Increase occupancy (run more warps concurrently) 

• Adjust threadblock dimensions 
– To maximize occupancy at given register and smem requirements 

• If occupancy is limited by registers per thread: 
– Reduce register count (-maxrregcount option, or __launch_bounds__) 

– Modify code to process several elements per thread 
• Doubling elements per thread doubles independent accesses per 

thread 
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Little’s Law for Escalators 
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• Say the parameters of our escalator are: 
– 1 person fits on each step 
– A step arrives every 2 seconds 

• Bandwidth: 0.5 person/s 

– 20 steps tall 
• Latency: 40 seconds 

• 1 person in flight: 0.025 persons/s achieved 
• To saturate bandwidth:  

– Need 1 person arriving every 2 s 
– Means we’ll need 20 persons in flight 

• The idea: Bandwidth × Latency 
– It takes latency time units for the first person to arrive 
– We need bandwidth persons get on the escalator every time unit 
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– 1 person fits on each step 
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– 20 steps tall 
• Latency: 40 seconds 

• 1 person in flight: 0.025 persons/s achieved 
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Having Sufficient Concurrent Accesses 

• In order to saturate memory bandwidth, SM must 
issue enough independent memory requests 
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Optimizing Access Concurrency 

• GK104, GK110 GPUs need ~100 lines in flight per SM 
– Each line is 128 bytes 
– Alternatively, ~400 32-byte segments in flight 

 

• Ways to increase concurrent accesses: 
– Increase occupancy (run more warps concurrently) 

• Adjust threadblock dimensions 
– To maximize occupancy at given register and smem requirements 

• If occupancy is limited by registers per thread: 
– Reduce register count (-maxrregcount option, or __launch_bounds__) 

– Modify code to process several elements per thread 
• Doubling elements per thread doubles independent accesses per thread 
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Case Study 2: Increasing Concurrent Accesses 

• VTI RTM kernel (3D FDTD) 
– Register and SMEM usage allows to run 42 warps per SM 
– Initial threadblock size choice: 32x16 

• 16 warps per threadblock → 32 concurrent warps per SM 

– Insufficient concurrent accesses limit performance: 
• Achieved mem throughput is only 37% 
• Memory-limied code (low arithmetic intensity) 
• Addresses are coalesced 

• Reduce threadblock size to 32x8 
– 8 warps per threadblock → 40 concurrent warps per SM  
– 32→40 warps per SM: 1.25x more memory accesses in flight 
– 1.28x speedup 
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Takeaways 

• Strive for address patterns that maximize the use 
of bytes that travel across the bus 

– Use the profiling tools to diagnose address patterns 

– Most recent tools will even point to code with poor 
address patterns 

• Provide sufficient concurrent accesses 
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Shared memory 
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Shared Memory 
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DRAM 

L2 

SM 

L1 
Read 
only 

Const SMEM 

SM • Comparing to DRAM: 
– 20-30x lower latency 

– ~10x higher bandwidth 

– Accessed at bank-
width granularity 
• Fermi: 4 bytes 

• Kepler: 8 bytes 

• GMEM granularity is 
either 32 or 128 bytes 

 



Shared Memory Instruction Operation 

• 32 threads in a warp provide addresses 
– HW determines into which 8-byte words addresses fall 

• Reads: fetch the words, distribute the requested bytes 
among the threads 
– Multi-cast capable 
– Bank conflicts cause replays 

• Writes: 
– Multiple threads writing the same address: one “wins” 
– Bank conflicts cause replays 
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Kepler Shared Memory Banking 

• 32 banks, 8 bytes wide 
– Bandwidth: 8 bytes per bank per clock per SM 
– 256 bytes per clk per SM 
– K20x: 2.6 TB/s aggregate across 14 SMs 

• Two modes: 
– 4-byte access (default): 

• Maintains Fermi bank-conflict behavior exactly 
• Provides 8-byte bandwidth for certain access patterns 

– 8-byte access: 
• Some access patterns with Fermi-specific padding may incur bank conflicts 
• Provides 8-byte bandwidth for all patterns (assuming 8-byte words) 

– Selected with cudaDeviceSetSharedMemConfig() function 
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Kepler 8-byte Bank Mode 

• Mapping addresses to banks: 
– Successive 8-byte words go to successive banks 

– Bank index:  
• (8B word index) mod 32 

• (4B word index) mod (32*2)  

• (byte address) mod (32*8) 

– Given the 8 least-significant address bits: ...BBBBBxxx 
• xxx selects the byte within an 8-byte word 

• BBBBB selects the bank 

• Higher bits select a “row” within a bank 
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Address Mapping in 8-byte Mode 
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0 1 

64 65 

Bank-0 

2 3 

Bank-1 

4 5 

Bank-2 

62 63 

Bank-31 

6 7 

Bank-3 

0 1 2 3 4 5 6 7 8 

0 4 8 12 16 20 24 28 32 38 

9 

40 

Data: 
 (or 4B-word index) 

Byte-address: 



Kepler 4-byte Bank Mode 

• Understanding this mapping details matters only if you’re trying 
to get 8-byte throughput in 4-byte mode 
– For all else just think that you have 32 banks, 4-bytes wide 

• Mapping addresses to banks: 
– Successive 4-byte words go to successive banks 

• We have to choose between two 4-byte “half-words” for each bank 
– “First” 32 4-byte words go to lower half-words 
– “Next” 32 4-byte words go to upper half-words 

– Given the 8 least-significant address bits: ...HBBBBBxx 
• xx selects the byte with a 4-byte word 
• BBBBB selects the bank 
• H selects the half-word within the bank 
• Higher bits select the “row” within a bank 
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Address Mapping in 4-byte Mode 
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0 32 

64 128 

Bank-0 

1 33 

65 

Bank-1 

2 34 

Bank-2 

31 63 

Bank-31 

3 35 

Bank-3 

0 1 2 3 4 5 6 7 8 

0 4 8 12 16 20 24 28 32 38 

9 

40 

Data: 
 (or 4B-word index) 

Byte-address: 



Shared Memory Bank Conflicts 

• A bank conflict occurs when: 
– 2 or more threads in a warp access different 8-B words in the same 

bank 
• Think: 2 or more threads access different “rows” in the same bank 

– N-way bank conflict: N threads in a warp conflict 
• Instruction gets replayed (N-1) times: increases latency 

• Worst case: 32-way conflict → 31 replays, latency comparable to DRAM 

• Note there is no bank conflict if: 
– Several threads access the same word 

– Several threads access different bytes of the same word 
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SMEM Access Examples 
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Addresses from a warp: no bank conflicts 
    One address access per bank 

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: no bank conflicts 
    One address access per bank 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: no bank conflicts 
    Multiple addresses per bank, but within the same word 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: 2-way bank conflict 
    2 accesses per bank, fall in two different words 



SMEM Access Examples 
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Bank-0 Bank-1 Bank-2 Bank-31 Bank-3 

Addresses from a warp: 3-way bank conflict 
    4 accesses per bank, fall in 3 different words 



Case Study 3: Matrix Transpose 

• Staged via SMEM to coalesce GMEM addresses 
– 32x32 threadblock, double-precision values 

– 32x32 array in shared memory 

• Initial implementation: 
– A warp reads a row of values from GMEM, writes to a row of 

SMEM 

– Synchronize the threads in a block 

– A warp reads a column of from SMEM, writes to a row in 
GMEM 
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Case Study 3: Matrix Transpose 

• 32x32 SMEM array 

• Warp accesses a column: 
– 32-way bank conflicts (threads in a warp access the same bank) 

31 

2 1 0 

31 2 1 0 

31 2 1 0 

warps: 
0            1            2                  31 

Bank 0 
Bank 1 
  … 
Bank 31 

2 0 1 

31 

Number indentifies which warp is accessing data 
Color indicates in which bank data resides 



Case Study 3: Matrix Transpose 

• Add a column for padding: 
– 32x33 SMEM array 

• Warp accesses a column: 
– 32 different banks, no bank conflicts 

 

31 2 1 0 

31 2 1 0 

31 2 1 0 

                       warps: 
0            1            2                  31       padding 

Bank 0 
Bank 1 
  … 
Bank 31 

31 2 0 1 

Number indentifies which warp is accessing data 
Color indicates in which bank data resides 



Case Study 3: Matrix Transpose 

• Remedy: 
– Simply pad each row of SMEM array with an extra element 

• 32x33 array, as opposed to 32x32 
• Effort: 1 character, literally 

– Warp access to SMEM 
• Writes still have no bank conflicts:  

– threads access successive elements 

• Reads also have no bank conflicts: 
– Stride between threads is 17 8-byte words, thus each goes to a different bank 

• Speedup: ~2x 
– Note that the code has 2 gmem accesses and 2 smem accesses per 

thread 
– Removing 32-way bank conflicts cut time in half: implies bank conflicts 

were taking as long as gmem accesses 
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Summary: Shared Memory 

• Shared memory is a tremendous resource 
– Very high bandwidth (terabytes per second) 
– 20-30x lower latency than accessing GMEM 
– Data is programmer-managed, no evictions by hardware 

• Performance issues to look out for: 
– Bank conflicts add latency and reduce throughput 

• Many-way bank conflicts can be very expensive 
– Replay latency adds up, can become as long as DRAM latency 
– However, few code patterns have high conflicts, padding is a very simple 

and effective solution 

– Use profiling tools to identify bank conflicts 
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Exposing sufficient parallelism 
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Kepler: Level of Parallelism Needed 

• To saturate instruction bandwidth: 

– Fp32 math:  ~1.7K independent instructions per SM 

– Lower for other, lower-throughput instructions 

– Keep in mind that Kepler SM can track up to 2048 threads 

• To saturate memory bandwidth:  

– 100+ independent lines per SM 
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Exposing Sufficient Parallelism 

• What hardware ultimately needs: 
– Arithmetic pipes:  

• sufficient number of independent instructions 
– accommodates multi-issue and latency hiding 

– Memory system:  
• sufficient requests in flight to saturate bandwidth 

• Two ways to increase parallelism: 
– More independent work within a thread (warp) 

• ILP for math, independent accesses for memory 

– More concurrent threads (warps) 
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Occupancy 

• Occupancy: number of concurrent threads per SM 
– Expressed as either: 

• the number of threads (or warps),  
• percentage of maximum threads 

• Determined by several factors  
– (refer to Occupancy Calculator, CUDA Programming Guide for full details) 
– Registers per thread 

• SM registers are partitioned among the threads 

– Shared memory per threadblock 
• SM shared memory is partitioned among the blocks 

– Threads per threadblock 
• Threads are allocated at threadblock granularity 
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Kepler SM resources 
– 64K 32-bit registers 
– Up to 48 KB of shared memory 
– Up to 2048 concurrent threads 
– Up to 16 concurrent threadblocks 

 



Occupancy and Performance 

• Note that 100% occupancy isn’t needed to reach 
maximum performace 
– Once the “needed” occupancy is reached, further increases 

won’t improve performance 

• Needed occupancy depends on the code 
– More independent work per thread -> less occupancy is 

needed 

– Memory-bound codes tend to need more occupancy 
• Higher latency than for arithmetic, need more work to hide it 
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Exposing Parallelism: Grid Configuration 

• Grid: arrangement of threads into threadblocks 

• Two goals: 
– Expose enough parallelism to an SM 

– Balance work across the SMs 

• Several things to consider when launching kernels: 
– Number of threads per threadblock 

– Number of threadblocks 

– Amount of work per threadblock 
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Threadblock Size and Occupancy 

• Threadblock size is a multiple of warp size (32) 
– Even if you request fewer threads, HW rounds up 

• Threadblocks can be too small 
– Kepler SM can run up to 16 threadblocks concurrently 

– SM may reach the block limit before reaching good occupancy 
• Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough) 

• Threadblocks can be too big 
– Quantization effect:  

• Enough SM resources for more threads, not enough for another large block 

• A threadblock isn’t started until resources are available for all of its threads 
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Threadblock Sizing 

• SM resources: 
– Registers 
– Shared memory 
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Number of warps allowed by SM resources 
Too few 
threads 
per block 

Too many 
threads 
per block 

Case Study 2 



Waves and Tails 

• Wave of threadblocks 
– A set of threadblocks that run concurrently on GPU 
– Maximum size of the wave is determined by: 

• How many threadblocks can fit on one SM 
– Number of threads per block 
– Resource consumption: registers per thread, SMEM per block 

• Number of SMs 

• Any grid launch will be made up of: 
– Some number of full waves 
– Possibly one tail: wave with fewer than possible blocks 

• Last wave by definition 
• Happens if the grid size is not divisible by wave size 
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Tail Effect 

• Tail underutilizes GPU 
– Impacts performance if tail is a significant portion of time  

• Example: 
– GPU with 8 SMs 
– Code that can run 1 threadblock per SM at a time 

• Wave size = 8 blocks 

– Grid launch: 12 threadblocks 

• 2 waves: 
– 1 full 
– Tail with 4 threadblocks 

• Tail utilizes 50% of GPU, compared to full-wave 
• Overall GPU utilization: 75% of possible 
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SM 

time 

wave 0 wave 1 (tail) 



Tail Effect 

• A concern only when: 
– Launching few threadblocks (no more than a few waves) 
– Tail effect is negligible when launching 10s of waves 

• If that’s your case, you can ignore the following info 

• Tail effect can occur even with perfectly-sized grids 
– Threadblocks don’t stay in lock-step 

• To combat tail effect: 
– Spread the work of one thread among several threads 

• Increases the number of blocks -> increases the number of waves 

– Spread the threads of one block among several 
• Improves load balancing during the tail 

– Launch independent kernels into different streams 
• Hardware will execute threadblocks from different kernels to fill the GPU 
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Tail Effect: Large vs Small Threadblocks 
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 2 waves of threadblocks 

— Tail is running at 25% of possible 

— Tail is 50% of time 

 Could be improved if the tail work could be 
better balanced across SMs 

 4 waves of threadblocks 

— Tail is running at 75% of possible 

— Tail is 25% of time 

 Tail work is spread across more 
threadblocks, better balanced across SMs 

 Estimated speedup: 1.5x (time reduced by 33%) 
wave 0 wave 1 (tail) 

wave 0 wave 1 (tail) 



Tail Effect: Few vs Many Waves of Blocks 
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SM 

80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible 

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible 

time 



Takeaways 

• Threadblock size choice: 
– Start with 128-256 threads per block 

• Adjust up/down by what best matches your function 
• Example: stencil codes prefer larger blocks to minimize halos 

– Multiple of warp size (32 threads) 
– If occupancy is critical to performance: 

• Check that block size isn’t precluding occupancy allowed by register and 
SMEM resources 

• Grid size: 
– 1,000 or more threadblocks 

• 10s of waves of threadblocks: no need to think about tail effect 
• Makes your code ready for several generations of future GPUs 
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Summary 

• What you need for good GPU performance 
– Expose sufficient parallelism to keep GPU busy 

• General recommendations: 
– 1000+ threadblocks per GPU 
– 1000+ concurrent threads per SM (32+ warps) 

– Maximize memory bandwidth utilization 
• Pay attention to warp address patterns ( 
• Have sufficient independent memory accesses to saturate the bus 

– Minimize warp divergence 
• Keep in mind that instructions are issued per warp 

• Use profiling tools to analyze your code 
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Additional Resources 

• Previous GTC optimization talks 
– Have different tips/tricks, case studies 
– GTC 2012: GPU Performance Analysis and Optimization 

•  http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=#1450 

– GTC 2010: Analysis-Driven Optimization: 
•  http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=#98 

• GTC 2013 talks on performance analysis tools: 
– S3011: Case Studies and Optimization Using Nsight Visual Studio Edition 
– S3046: Performance Optimization Strategies for GPU-Accelerated Applications 

• Kepler architecture white paper: 
– http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf 

• Miscellaneous: 
– Webinar on register spilling: 

• Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf 
• Video: http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4 

– GPU computing webinars: https://developer.nvidia.com/gpu-computing-webinars 
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