
Performance Optimization:
Programming Guidelines and GPU Architecture Reasons Behind Them

Paulius Micikevicius
Developer Technology, NVIDIA

Goals of this Talk

• Two-fold:
– Describe how hardware operates
– Show how hw operation translates to optimization advice

• Previous years’ GTC Optimization talks had a different focus:
– Show how to diagnose performance issues
– Give optimization advice

• For a full complement of information, check out:
– GTC 2010, GTC 2012 optimization talks
– GTC 2013 profiling tool sessions:

• S3046, S3011

© 2013, NVIDIA 2

Outline

• Thread (warp) execution

• Kernel execution

• Memory access

• Required parallelism

© 2013, NVIDIA 3

Requirements to Achieve Good GPU Performance

• In order of importance:

– Expose Sufficient Parallelism

– Efficient Memory Access

– Efficient Instruction Execution

© 2013, NVIDIA 4

Thread/Warp Execution

© 2013, NVIDIA 5

SIMT Execution

• Single Instruction Multiple Threads

– An instruction is issued for an entire warp

• Warp = 32 consecutive threads

– Each thread carries out the operation on its own
arguments

© 2013, NVIDIA 6

Warps and Threadblocks

• Threadblocks can be 1D, 2D, 3D
– Dimensionality of thread IDs is purely a programmer convenience
– HW “looks” at threads in 1D

• Consecutive 32 threads are grouped into a warp
– 1D threadblock:

• Warp 0: threads 0...31
• Warp 1: threads 32...63

– 2D/3D threadblocks
• First, convert thread IDs from 2D/3D to 1D:

– X is the fastest varying dimension, z is the slowest varying dimension

• Then, same as for 1D blocks

• HW uses a discrete number of warps per threadblock
– If block size isn’t a multiple of warp size, some threads in the last warp are inactive
– A warp is never split between different threadblocks

© 2013, NVIDIA 7

• Threadblocks can be 1D, 2D, 3D
– Dimensionality of thread IDs is purely a programmer convenience
– HW “looks” at threads in 1D

• Consecutive 32 threads are grouped into a warp
– 1D threadblock:

• Warp 0: threads 0...31
• Warp 1: threads 32...63

– 2D/3D threadblocks
• First, convert thread IDs from 2D/3D to 1D:

– X is the fastest varying dimension, z is the slowest varying dimension

• Then, same as for 1D blocks

• HW uses a discrete number of warps per threadblock
– If block size isn’t a multiple of warp size, some threads in the last warp are inactive
– A warp is never split between different threadblocks

Warps and Threadblocks

© 2013, NVIDIA 8

Say, 40x2 threadblock (80 “app” threads)
 40 threads in x
 2 rows of threads in y

• Threadblocks can be 1D, 2D, 3D
– Dimensionality of thread IDs is purely a programmer convenience
– HW “looks” at threads in 1D

• Consecutive 32 threads are grouped into a warp
– 1D threadblock:

• Warp 0: threads 0...31
• Warp 1: threads 32...63

– 2D/3D threadblocks
• First, convert thread IDs from 2D/3D to 1D:

– X is the fastest varying dimension, z is the slowest varying dimension

• Then, same as for 1D blocks

• HW uses a discrete number of warps per threadblock
– If block size isn’t a multiple of warp size, some threads in the last warp are inactive
– A warp is never split between different threadblocks

Warps and Threadblocks

© 2013, NVIDIA 9

Say, 40x2 threadblock (80 “app” threads)
 40 threads in x
 2 rows of threads in y
3 warps (92 “hw” threads)
 1st (blue), 2nd (orange), 3rd (green)
 note that half of the “green” warp isn’t used by the app

Control Flow

• Different warps can execute entirely different code
– No performance impact due to different control flow
– Each warp maintains its own program counter

• If only a portion of a warp has to execute an operation
– Threads that don’t participate are “masked out”

• Don’t fetch operands, don’t write output
– Guarantees correctness

• They still spend time in the instructions (don’t execute something else)

• Conditional execution within a warp
– If at least one thread needs to take a code path, entire warp takes

that path

© 2013, NVIDIA 10

Control Flow

© 2013, NVIDIA 11

if (...)
{
 // then-clause
}
else
{
 // else-clause
}

in
st

ru
ct

io
n

s

Different Code Paths in Different Warps

© 2013, NVIDIA 12

In
st

ru
ct

io
n

s,
 t

im
e

Warp
(“vector” of threads)

35 34 33 63 62 32 3 2 1 31 30 0

Warp
(“vector” of threads)

Different Code Paths Within a Warp

© 2013, NVIDIA 13

In
st

ru
ct

io
n

s,
 t

im
e

3 2 1 31 30 0 35 34 33 63 62 32

Instruction Issue

• Instructions are issued in-order

– Compiler arranges the instruction sequence

– If an instruction is not eligible, it stalls the warp

• An instruction is eligible for issue if both are true:

– A pipeline is available for execution

• Some pipelines need multiple cycles to issue a warp

– All the arguments are ready

• Argument isn’t ready if a previous instruction hasn’t yet produced it

© 2013, NVIDIA 14

Latency Hiding

• Instruction latencies:
– Roughly 10-20 cycles (replays increase these)
– DRAM accesses have higher latencies (400-800 cycles)

• Instruction Level Parallelism (ILP)
– Independent instructions between two dependent ones
– ILP depends on the code, done by the compiler

• Switching to a different warp
– If a warp stalls for N cycles, having N other warps with eligible

instructions keeps the SM going
– Switching between concurrent warps has no overhead

• State (registers, shared memory) is partitioned, not stored/restored

© 2013, NVIDIA 15

Latency Hiding

• Instruction latencies:
– Roughly 10-20 cycles (replays increase these)
– DRAM accesses have higher latencies (400-800 cycles)

• Instruction Level Parallelism (ILP)
– Independent instructions between two dependent ones
– ILP depends on the code, done by the compiler

• Switching to a different warp
– If a warp stalls for N cycles, having N other warps with eligible

instructions keeps the SM going
– Switching between concurrent warps has no overhead

• State (registers, shared memory) is partitioned, not stored/restored

© 2013, NVIDIA 16

 FFMA R0, R43, R0, R4;

 FFMA R1, R43, R4, R5;

 FMUL R7, R9, R0;

 FMUL R8, R9, R1;

 ST.E [R2], R7;

ILP: 2

Latency Hiding

• Instruction latencies:
– Roughly 10-20 cycles (replays increase these)
– DRAM accesses have higher latencies (400-800 cycles)

• Instruction Level Parallelism (ILP)
– Independent instructions between two dependent ones
– ILP depends on the code, done by the compiler

• Switching to a different warp
– If a warp stalls for N cycles, having N other warps with eligible

instructions keeps the SM going
– Switching between concurrent warps has no overhead

• State (registers, shared memory) is partitioned, not stored/restored

© 2013, NVIDIA 17

Kepler Instruction Issue

• GPU consists of some number of SMs
– Kepler chips: 1-14 SMs

• Each SM has 4 instruction scheduler units
– Warps are partitioned among these units
– Each unit keeps track of its warps and their eligibility to issue

• Each scheduler can dual-issue instructions from a warp
– Resources and dependencies permitting
– Thus, a Kepler SM could issue 8 warp-instructions in one cycle

• 7 is the sustainable peak
• 4-5 is pretty good for instruction-limited codes
• Memory- or latency-bound codes by definition will achieve much lower IPC

© 2013, NVIDIA 18

Kepler Instruction Issue

• Kepler SM needs at least 4 warps
– To occupy the 4 schedulers
– In practice you need many more to hide instruction latency

• An SM can have up to 64 warps active
• Warps can come from different threadblocks and different concurent kernels

– HW doesn’t really care: it keeps track of the instruction stream for each warp

• For instruction limited codes:
– No ILP: 40 or more concurrent warps per SM

• 4 schedulers × 10+ cycles of latency

– The more ILP, the fewer warps you need

• Rough rule of thumb:
– Start with ~32 warps for SM, adjust from there

• Most codes have some ILP

© 2013, NVIDIA 19

CUDA Cores and the Number of Threads

• Note that I haven’t mentioned CUDA cores till now

– GPU core = fp32 pipeline lane (192 per Kepler SM)

– GPU core definition predates compute-capable GPUs

• Number of threads needed for good performance:

– Not really tied to the number of CUDA cores

– Need enough threads (warps) to hide latencies

© 2013, NVIDIA 20

GK110 SM Diagram

• 192 fp32 lanes (cores)
– fp32 math
– Simple int32 math (add,min,etc.)

• 64 fp64 lanes
• 32 SFU lanes

– Int32 multiplies, etc.
– Transcendentals

• 32 LD/ST lanes
– GMEM, SMEM, LMEM accesses

• 16 TEX lanes
– Texture access
– Read-only GMEM access

© 2013, NVIDIA 21 http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

Kepler SM Instruction Throughputs

• Fp32 instructions
– Equivalent of “6 warps worth”of instructions per cycle (192 pipes)
– Requires some dual-issue to use all pipes:

• SM can issue instructions from 4 warps per cycle (4 schedulers/SM)
• Without any ILP one couldn’t use more than 4*32=128 fp32 pipes

• Fp64 pipelines
– Number depends on a chip
– Require 2 cycles to issue a warp
– K20 (gk110) chips: 2 warps worth of instructions per cycle (64 pipes)

• Memory access
– Shared/global/local memory instructions
– 1 warp per cycle

• See the CUDA Programming Guide for more details (docs.nvidia.com)
– Table “Throughput of Native Arithmetic Instructions”

© 2013, NVIDIA 22

http://www.docs.nvidia.com/

Examining Assembly

• Two levels of assembly
– PTX: virtual assembly

• Forward-compatible
– Driver will JIT to machine language

• Can be inlined in your CUDA C code
• Not the final, optimized machine code

– Machine language:
• Architecture specific (not forward/backward compatible)
• The sequence of instructions that HW executes

• Sometimes it’s interesting to examine the assembly
– cuobjdump utility

• comes with every CUDA toolkit
• PTX: cuobjdump -ptx <executable or object file>
• Machine assembly: cuobjdump -sass <executable or object file>

– Docs on inlining PTX and instruction set
• Look in the docs directory inside the toolkit install for PDFs

© 2013, NVIDIA 23

Takeaways

• Have enough warps to hide latency
– Rough rule of thumb: initially aim for 32 warps/SM

• Use profiling tools to tune performance afterwards

– Don’t think in terms of CUDA cores

• If your code is instruction throughput limited:
– When possible use operations that go to wider pipes

• Use fp32 math instead of fp64, when feasible
• Use intrinsics (__sinf(), __sqrtf(), ...)

– Single HW instruction, rather than SW sequences of instructions
– Tradeoff: slightly fewer bits of precision
– For more details: CUDA Programming Guide

– Minimize different control flow within warps (warp-divergence)
• Only an issue if large portions of time are spent in divergent code

© 2013, NVIDIA 24

Kernel Execution

© 2013, NVIDIA 25

Kernel Execution

• A grid of threadblocks is launched
– Kernel<<<1024,...>>>(...): grid of 1024 threadblocks

• Threadblocks are assigned to SMs
– Assignment happens only if an SM has sufficient resources for the entire

threadblock
• Resources: registers, SMEM, warp slots
• Threadblocks that haven’t been assigned wait for resources to free up

– The order in which threadblocks are assigned is not defined
• Can and does vary between architectures

• Warps of a threadblock get partitioned among the 4 schedulers
– Each scheduling unit keeps track of all its warps
– In each cycle chooses an eligible warp for issue

• Aims for fairness and performance

© 2013, NVIDIA 26

Concurrent Kernel Execution

• General stream rules apply - calls may overlap if both are true:
– Calls are issued to different, non-null streams
– There is no synchronization between the two calls

• Kernel launch processing
– First, assign all threadblocks of the “current” grid to SMs
– If SM resources are still available, start assigning blocks from the “next” grid
– “Next”:

• Compute capability 3.5: any kernel to a different stream that’s not separated with a sync
• Compute capability <3.5: the next kernel launch in code sequence

– An SM can concurrently execute threadblocks from different kernels
– Limits on concurrent kernels per GPU:

• CC 3.5: 32
• CC 2.x: 16

© 2013, NVIDIA 27

Kernel Execution in High Priority Streams

• Priorities require:
– CC 3.5 or higher
– CUDA 5.5 or higher

• High-priority kernel threadblocks will be assigned to SMs as
soon as possible
– Do not preempt already executing threadblocks

• Wait for these to finish and free up SM resources

– “Pass” the low-priority threadblocks waiting to be assigned

• Concurrent kernel requirements apply
– Calls in the same stream still execute in sequence

© 2013, NVIDIA 28

CDP Kernel Execution

• Same as “regular” launches, except cases where a GPU thread
waits for its launch to complete
– GPU thread: kernel launch, device or stream sync call later
– To prevent deadlock, the parent threadblock:

• Is swapped out upon reaching the sync call
– guarantees that child grid will execute

• Is restored once all child threadblocks complete

– Context store/restore adds some overhead
• Register and SMEM contents must be written/read to GMEM

– In general:
• We guarantee forward progress for child grids
• Implementation for the guarantee may change in the future

• A threadblock completes once all its child grids finish

© 2013, NVIDIA 29 http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf

http://docs.nvidia.com/cuda/pdf/CUDA_Dynamic_Parallelism_Programming_Guide.pdf

Takeaways

• Ensure that grids have sufficient threadblocks to occupy the
entire chip
– Grid threadblocks are assigned to SMs
– Each SM partitions threadblock warps among its 4 schedulers
– SM needs sufficient warps to hide latency

• Concurrent kernels:
– Help if individual grids are too small to fully utilize GPU

• Executing in high-priority streams:
– Helps if certain kernels need preferred execution

• CUDA Dynamic Parallelism:
– Be aware that a sync call after launching a kernel may cause a

threadlbock state store/restore

© 2013, NVIDIA 30

Memory Access

© 2013, NVIDIA 31

Memory Optimization

• Many algorithms are memory-limited
– Most are at least somewhat sensitive to memory bandwidth

– Reason: not that much arithmetic per byte accessed
• Not uncommon for code to have ~1 operation per byte

• Instr:mem bandwidth ratio for most modern processors is 4-10
– CPUs and GPUs

– Exceptions exist: DGEMM, Mandelbrot, some Monte Carlo, etc.

• Optimization goal: maximize bandwidth utilization
– Maximize the use of bytes that travel on the bus

– Have sufficient concurrent memory accesses

© 2013, NVIDIA 32

Maximize Byte Use

• Two things to keep in mind:
– Memory accesses are per warp
– Memory is accessed in discrete

chunks
• lines/segments
• want to make sure that bytes

that travel from DRAM to SMs
get used

– For that we should understand
how memory system works

• Note: not that different from CPUs
– x86 needs SSE/AVX memory

instructions to maximize performance

© 2013, NVIDIA 33

SM

DRAM

SM SM SM

GPU Memory System

© 2013, NVIDIA 34

DRAM

SM

SM

• All data lives in DRAM

– Global memory

– Local memory

– Textures

– Constants

GPU Memory System

© 2013, NVIDIA 35

DRAM

L2

SM SM

• All DRAM accesses go
through L2

• Including copies:
– P2P
– CPU-GPU

GPU Memory System

© 2013, NVIDIA 36

DRAM

L2

SM

L1
Read
only

Const

SM • Once in an SM, data
goes into one of 3
caches/buffers

• Programmer’s choice

– L1 is the “default”

– Read-only, Const
require explicit code

Access Path

• L1 path
– Global memory

• Memory allocated with cudaMalloc()
• Mapped CPU memory, peer GPU memory
• Globally-scoped arrays qualified with __global__

– Local memory
• allocation/access managed by compiler so we’ll ignore

• Read-only/TEX path
– Data in texture objects, CUDA arrays
– CC 3.5 and higher:

• Global memory accessed via intrinsics (or specially qualified kernel arguments)

• Constant path
– Globally-scoped arrays qualified with __constant__

© 2013, NVIDIA 37

Access Via L1

• Natively supported word sizes per thread:
– 1B, 2B, 4B, 8B, 16B

• Addresses must be aligned on word-size boundary

– Accessing types of other sizes will require multiple instructions

• Accesses are processed per warp
– Threads in a warp provide 32 addresses

• Fewer if some threads are inactive

– HW converts addresses into memory transactions
• Address pattern may require multiple transactions for an instruction

• If N transactions are needed, there will be (N-1) replays of the instruction

© 2013, NVIDIA 38

GMEM Writes

• Not cached in the SM
– Invalidate the line in L1, go to L2

• Access is at 32 B segment granularity

• Transaction to memory: 1, 2, or 4 segments
– Only the required segments will be sent

• If multiple threads in a warp write to the same address
– One of the threads will “win”

– Which one is not defined

© 2013, NVIDIA 39

Some Store Pattern Examples

© 2013, NVIDIA 40

...
addresses from a warp one 4-segment transaction

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

Some Store Pattern Examples

© 2013, NVIDIA 41

...
addresses from a warp three 1-segment transactions

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

Some Store Pattern Examples

© 2013, NVIDIA 42

addresses from a warp one 2-segment transaction

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

Some Store Pattern Examples

© 2013, NVIDIA 43

addresses from a warp 2 1-segment transactions

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

GMEM Reads

• Attempt to hit in L1 depends on programmer choice and compute capability
• HW ability to hit in L1:

– CC 1.x: no L1
– CC 2.x: can hit in L1
– CC 3.0, 3.5: cannot hit in L1

• L1 is used to cache LMEM (register spills, etc.), buffer reads

• Read instruction types
– Caching:

• Compiler option: -Xptxas -dlcm=ca
• On L1 miss go to L2, on L2 miss go to DRAM
• Transaction: 128 B line

– Non-caching:
• Compiler option: -Xptxas -dlcm=cg
• Go directly to L2 (invalidate line in L1), on L2 miss go to DRAM
• Transaction: 1, 2, 4 segments, segment = 32 B (same as for writes)

© 2013, NVIDIA 44

Caching Load

• Scenario:
– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 1 cache-line
– No replays
– Bus utilization: 100%

• Warp needs 128 bytes
• 128 bytes move across the bus on a miss

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

45 © 2012, NVIDIA

Non-caching Load

• Scenario:
– Warp requests 32 aligned, consecutive 4-byte words

• Addresses fall within 4 segments
– No replays
– Bus utilization: 100%

• Warp needs 128 bytes
• 128 bytes move across the bus on a miss

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

46 © 2012, NVIDIA

Caching Load

...
addresses from a warp

• Scenario:
– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 1 cache-line
– No replays
– Bus utilization: 100%

• Warp needs 128 bytes
• 128 bytes move across the bus on a miss

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

47 © 2012, NVIDIA

Non-caching Load

...
addresses from a warp

• Scenario:
– Warp requests 32 aligned, permuted 4-byte words

• Addresses fall within 4 segments
– No replays
– Bus utilization: 100%

• Warp needs 128 bytes
• 128 bytes move across the bus on a miss

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

48 © 2012, NVIDIA

Caching Load

• Scenario:
– Warp requests 32 consecutive 4-byte words, offset from perfect alignment

• Addresses fall within 2 cache-lines
– 1 replay (2 transactions)
– Bus utilization: 50%

• Warp needs 128 bytes
• 256 bytes move across the bus on misses

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

...
addresses from a warp

49 © 2012, NVIDIA

Non-caching Load

• Scenario:
– Warp requests 32 consecutive 4-byte words, offset from perfect alignment

• Addresses fall within at most 5 segments
– 1 replay (2 transactions)
– Bus utilization: at least 80%

• Warp needs 128 bytes
• At most 160 bytes move across the bus
• Some misaligned patterns will fall within 4 segments, so 100% utilization

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

50 © 2012, NVIDIA

...
addresses from a warp

Caching Load

...
addresses from a warp

• Scenario:
– All threads in a warp request the same 4-byte word

• Addresses fall within a single cache-line
– No replays
– Bus utilization: 3.125%

• Warp needs 4 bytes
• 128 bytes move across the bus on a miss

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

51 © 2012, NVIDIA

Non-caching Load

addresses from a warp

• Scenario:
– All threads in a warp request the same 4-byte word

• Addresses fall within a single segment
– No replays
– Bus utilization: 12.5%

• Warp needs 4 bytes
• 32 bytes move across the bus on a miss

...

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

52 © 2012, NVIDIA

Caching Load

...
addresses from a warp

• Scenario:
– Warp requests 32 scattered 4-byte words

• Addresses fall within N cache-lines
– (N-1) replays (N transactions)
– Bus utilization: 32*4B / (N*128B)

• Warp needs 128 bytes
• N*128 bytes move across the bus on a miss

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

53 © 2012, NVIDIA

Non-caching Load

addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416
Memory addresses

0

• Scenario:
– Warp requests 32 scattered 4-byte words

• Addresses fall within N segments
– (N-1) replays (N transactions)

• Could be lower some segments can be arranged into a single transaction

– Bus utilization: 128 / (N*32) (4x higher than caching loads)
• Warp needs 128 bytes
• N*32 bytes move across the bus on a miss

...

54 © 2012, NVIDIA

Caching vs Non-caching Loads

• Compute capabilities that can hit in L1 (CC 2.x)
– Caching loads are better if you count on hits

– Non-caching loads are better if:
• Warp address pattern is scattered

• When kernel uses lots of LMEM (register spilling)

• Compute capabilities that cannot hit in L1 (CC 1.x, 3.0, 3.5)
– Does not matter, all loads behave like non-caching

• In general, don’t rely on GPU caches like you would on CPUs:
– 100s of threads sharing the same L1

– 1000s of threads sharing the same L2

© 2013, NVIDIA 55

L1 Sizing

• Fermi and Kepler GPUs split 64 KB RAM between L1 and SMEM
– Fermi GPUs (CC 2.x): 16:48, 48:16
– Kepler GPUs (CC 3.x):16:48, 48:16, 32:32

• Programmer can choose the split:
– Default: 16 KB L1, 48 KB SMEM
– Run-time API functions:

• cudaDeviceSetCacheConfig(), cudaFuncSetCacheConfig()

– Kernels that require different L1:SMEM sizing cannot run concurrently

• Making the choice:
– Large L1 can help when using lots of LMEM (spilling registers)
– Large SMEM can help if occupancy is limited by shared memory

© 2013, NVIDIA 56

Read-Only Cache

• An alternative to L1 when accessing DRAM
– Also known as texture cache: all texture accesses use this cache
– CC 3.5 and higher also enable global memory accesses

• Should not be used if a kernel reads and writes to the same addresses

• Comparing to L1:
– Generally better for scattered reads than L1

• Caching is at 32 B granularity (L1, when caching operates at 128 B granularity)
• Does not require replay for multiple transactions (L1 does)

– Higher latency than L1 reads, also tends to increase register use

• Aggregate 48 KB per SM: 4 12-KB caches
– One 12-KB cache per scheduler

• Warps assigned to a scheduler refer to only that cache

– Caches are not coherent – data replication is possible

© 2013, NVIDIA 57

Read-Only Cache Operation

• Always attempts to hit
• Transaction size: 32 B queries
• Warp addresses are converted to queries 4 threads at

a time
– Thus a minimum of 8 queries per warp
– If data within a 32-B segment is needed by multiple threads

in a warp, segment misses at most once

• Additional functionality for texture objects
– Interpolation, clamping, type conversion

© 2013, NVIDIA 58

Read-Only Cache Operation

© 2013, NVIDIA 59

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

1st Query

Read-Only Cache Operation

© 2013, NVIDIA 60

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

2nd Query

1st Query

Read-Only Cache Operation

© 2013, NVIDIA 61

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

1st Query

Read-Only Cache Operation

© 2013, NVIDIA 62

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

2nd and 3rd Queries

1st Query

Read-Only Cache Operation

© 2013, NVIDIA 63

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

...
addresses from a warp

96 192 128 160 224 288 256 32 64 352 320 384 448 416 0

2nd and 3rd Queries

1st Query

Note this segment was already requested in the 1st query:
cache hit, no redundant requests to L2

Accessing GMEM via Read-Only Cache

• Compiler must know that addresses read are not also
written by the same kernel

• Two ways to achieve this

– Intrinsic: __ldg()

– Qualify the pointers to the kernel

• All pointers: __restrict__

• Pointers you’d like to dereference via read-only cache: const __restrict__

• May not be sufficient if kernel passes these pointers to functions

© 2013, NVIDIA 64

• Compiler must know that addresses read are not also
written by the same kernel

• Two ways to achieve this

– Intrinsic: __ldg()

– Qualify the pointers to the kernel

• All pointers: __restrict__

• Pointers you’d like to dereference via read-only cache: const __restrict__

• May not be sufficient if kernel passes these pointers to functions

Accessing GMEM via Read-Only Cache

© 2013, NVIDIA 65

__global__ void kernel(int *output,
 int *input)
{
 ...
 output[idx] = ... + __ldg(&input[idx]);
}

• Compiler must know that addresses read are not also
written by the same kernel

• Two ways to achieve this

– Intrinsic: __ldg()

– Qualify the pointers to the kernel

• All pointers: __restrict__

• Pointers you’d like to dereference via read-only cache: const __restrict__

• May not be sufficient if kernel passes these pointers to functions

Accessing GMEM via Read-Only Cache

© 2013, NVIDIA 66

__global__ void kernel(int*__restrict__ output,
 const int* __restrict__ input)
{
 ...
 output[idx] = ... + input[idx];
}

Additional Texture Functionality

• All of these are “free”
– Dedicated hardware
– Must use CUDA texture objects

• See CUDA Programming Guide for more details
• Texture objects can interoperate graphics (OpenGL, DirectX)

• Out-of-bounds index handling: clamp or wrap-around
• Optional interpolation

– Think: using fp indices for arrays
– Linear, bilinear, trilinear

• Interpolation weights are 9-bit

• Optional format conversion
– {char, short, int, fp16} -> float

© 2013, NVIDIA 67

Examples of Texture Object Indexing

© 2013, NVIDIA 68

Index Clamp:

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

1

2

3

0
(2.5, 0.5)
(1.0, 1.0)

0 1 2 3 4

1

2

3

0
(5.5, 1.5)

0 1 2 3 4

Index Wrap:

Integer indices fall between elements
Optional interpolation:
 Weights are determined by coordinate distance

Constant Cache

• The 3rd alternative DRAM access path
• Also the most restrictive:

– Total data for this path is limited to 64 KB
• Must be copied into an array qualified with __constant__

– Cache throughput: 4 B per clock per SM
• So, unless the entire warp reads the same address, replays are needed

• Useful when:
– There is some small subset of data used by all threads

• But it gets evicted from L1/Read-Only paths by reads of other data

– Data addressing is not dependent on thread ID
• Replays are expensive

• Example use: FD coefficients

© 2013, NVIDIA 69

Constant Cache

• The 3rd alternative DRAM access path
• Also the most restrictive:

– Total data for this path is limited to 64 KB
• Must be copied into an array qualified with __constant__

– Cache throughput: 4 B per clock per SM
• So, unless the entire warp reads the same address, replays are needed

• Useful when:
– There is some small subset of data used by all threads

• But it gets evicted from L1/Read-Only paths by reads of other data

– Data addressing is not dependent on thread ID
• Replays are expensive

• Example use: FD coefficients

© 2013, NVIDIA 70

// global scope:
__constant__ float coefficients[16];
...

// in GPU kernel code:
deriv = coefficients[0] * data[idx] + ...
...

// in CPU-code:
cudaMemcpyToSymbol(coefficients, ...)

Address Patterns

• Coalesced address pattern
– Warp utilizes all the bytes that move across the bus

• Suboptimal address patterns
– Throughput from HW point of view is significantly higher than from app point

of view
– Four general categories:

1) Offset (not line-aligned) warp addresses
2) Large strides between threads within a warp
3) Each thread accesses a contiguous region (larger than a word)
4) Irregular (scattered) addresses

See GTC 2012 “GPU Performance Analysis and Optimization” (session S0514) for details on

diagnosing and remedies. Slides and video:
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=#1450

© 2013, NVIDIA 71

http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=S0514&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=

Case Study 1: Contiguous Region per Thread

• Say we are reading a 12-byte structure per thread
– Non-native word size

struct Position
{
 float x, y, z;
};
...
__global__ void kernel(Position *data, ...)
{
 int idx = blockIdx.x * blockDim.x + threadIdx.x;
 Position temp = data[idx];
 ...
}

© 2012, NVIDIA 72

Case Study 1: Non-Native Word Size

• Compiler converts temp = data[idx] into 3 loads:

– Each loads 4 bytes

– Can’t do an 8 and a 4 byte load: 12 bytes per element
means that every other element wouldn’t align the 8-
byte load on 8-byte boundary

• Addresses per warp for each of the loads:

– Successive threads read 4 bytes at 12-byte stride

© 2012, NVIDIA 73

Case Study 1: 1st Load Instruction

© 2012, NVIDIA 74

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

32 B memory transaction

Case Study 1: 2nd Load Instruction

© 2012, NVIDIA 75

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

Case Study 1: 3rd Load Instruction

© 2012, NVIDIA 76

4 8 12 16 20 56 60 64 0 24 48 52 36 40 44 28 32

addresses from a warp

...

Case Study 1: Performance and Solutions

• Because of the address pattern, SMs end up requesting 3x
more bytes than application requests
– We waste a lot of bandwidth

• Potential solutions:
– Change data layout from array of structures to structure of arrays

• In this case: 3 separate arrays of floats
• The most reliable approach (also ideal for both CPUs and GPUs)

– Use loads via read-only cache (LDG)
• As long as lines survive in the cache, performance will be nearly optimal
• Only available in CC 3.5 and later

– Stage loads via shared memory (SMEM)

© 2012, NVIDIA 77

Case Study 1: Speedups for Various Solutions

• Kernel that just reads that data:
– AoS (float3): 1.00
– LDG: 1.43
– SMEM: 1.40
– SoA: 1.51

• Kernel that just stores the data:
– AoS (float3): 1.00
– LDG: N/A (stores don’t get cached in SM)
– SMEM: 1.88
– SoA: 1.88

• Speedups aren’t 3x because we are hitting in L2
– DRAM didn’t see a 3x increase in traffic

© 2013, NVIDIA 78

Maximize Memory Bandwidth Utilization

• Maximize the use of bytes that travel on the bus

– Address pattern

• Have sufficient concurrent memory accesses

– Latency hiding

© 2013, NVIDIA 79

Optimizing Access Concurrency

• Have enough concurrent accesses to saturate the bus
– Little’s law: need latency × bandwidth bytes in flight

• Ways to increase concurrent accesses:
– Increase occupancy (run more warps concurrently)

• Adjust threadblock dimensions
– To maximize occupancy at given register and smem requirements

• If occupancy is limited by registers per thread:
– Reduce register count (-maxrregcount option, or __launch_bounds__)

– Modify code to process several elements per thread
• Doubling elements per thread doubles independent accesses per

thread

80 © 2012, NVIDIA

Little’s Law for Escalators

© 2013, NVIDIA 81

• Say the parameters of our escalator are:
– 1 person fits on each step
– A step arrives every 2 seconds

• Bandwidth: 0.5 person/s

– 20 steps tall
• Latency: 40 seconds

• 1 person in flight: 0.025 persons/s achieved
• To saturate bandwidth:

– Need 1 person arriving every 2 s
– Means we’ll need 20 persons in flight

• The idea: Bandwidth × Latency
– It takes latency time units for the first person to arrive
– We need bandwidth persons get on the escalator every time unit

Little’s Law for Escalators

© 2013, NVIDIA 82

• Say the parameters of our escalator are:
– 1 person fits on each step
– A step arrives every 2 seconds

• Bandwidth: 0.5 person/s

– 20 steps tall
• Latency: 40 seconds

• 1 person in flight: 0.025 persons/s achieved
• To saturate bandwidth:

– Need 1 person arriving every 2 s
– Means we’ll need 20 persons in flight

• The idea: Bandwidth × Latency
– It takes latency time units for the first person to arrive
– We need bandwidth persons get on the escalator every time unit

Little’s Law for Escalators

© 2013, NVIDIA 83

• Say the parameters of our escalator are:
– 1 person fits on each step
– A step arrives every 2 seconds

• Bandwidth: 0.5 person/s

– 20 steps tall
• Latency: 40 seconds

• 1 person in flight: 0.025 persons/s achieved
• To saturate bandwidth:

– Need 1 person arriving every 2 s
– Means we’ll need 20 persons in flight

• The idea: Bandwidth × Latency
– It takes latency time units for the first person to arrive
– We need bandwidth persons get on the escalator every time unit

Having Sufficient Concurrent Accesses

• In order to saturate memory bandwidth, SM must
issue enough independent memory requests

© 2012, NVIDIA 84

Optimizing Access Concurrency

• GK104, GK110 GPUs need ~100 lines in flight per SM
– Each line is 128 bytes
– Alternatively, ~400 32-byte segments in flight

• Ways to increase concurrent accesses:
– Increase occupancy (run more warps concurrently)

• Adjust threadblock dimensions
– To maximize occupancy at given register and smem requirements

• If occupancy is limited by registers per thread:
– Reduce register count (-maxrregcount option, or __launch_bounds__)

– Modify code to process several elements per thread
• Doubling elements per thread doubles independent accesses per thread

85 © 2012, NVIDIA

Case Study 2: Increasing Concurrent Accesses

• VTI RTM kernel (3D FDTD)
– Register and SMEM usage allows to run 42 warps per SM
– Initial threadblock size choice: 32x16

• 16 warps per threadblock → 32 concurrent warps per SM

– Insufficient concurrent accesses limit performance:
• Achieved mem throughput is only 37%
• Memory-limied code (low arithmetic intensity)
• Addresses are coalesced

• Reduce threadblock size to 32x8
– 8 warps per threadblock → 40 concurrent warps per SM
– 32→40 warps per SM: 1.25x more memory accesses in flight
– 1.28x speedup

© 2013, NVIDIA 86

Takeaways

• Strive for address patterns that maximize the use
of bytes that travel across the bus

– Use the profiling tools to diagnose address patterns

– Most recent tools will even point to code with poor
address patterns

• Provide sufficient concurrent accesses

© 2013, NVIDIA 87

Shared memory

© 2012, NVIDIA 88

Shared Memory

© 2013, NVIDIA 89

DRAM

L2

SM

L1
Read
only

Const SMEM

SM • Comparing to DRAM:
– 20-30x lower latency

– ~10x higher bandwidth

– Accessed at bank-
width granularity
• Fermi: 4 bytes

• Kepler: 8 bytes

• GMEM granularity is
either 32 or 128 bytes

Shared Memory Instruction Operation

• 32 threads in a warp provide addresses
– HW determines into which 8-byte words addresses fall

• Reads: fetch the words, distribute the requested bytes
among the threads
– Multi-cast capable
– Bank conflicts cause replays

• Writes:
– Multiple threads writing the same address: one “wins”
– Bank conflicts cause replays

© 2012, NVIDIA 90

Kepler Shared Memory Banking

• 32 banks, 8 bytes wide
– Bandwidth: 8 bytes per bank per clock per SM
– 256 bytes per clk per SM
– K20x: 2.6 TB/s aggregate across 14 SMs

• Two modes:
– 4-byte access (default):

• Maintains Fermi bank-conflict behavior exactly
• Provides 8-byte bandwidth for certain access patterns

– 8-byte access:
• Some access patterns with Fermi-specific padding may incur bank conflicts
• Provides 8-byte bandwidth for all patterns (assuming 8-byte words)

– Selected with cudaDeviceSetSharedMemConfig() function

© 2012, NVIDIA 91

Kepler 8-byte Bank Mode

• Mapping addresses to banks:
– Successive 8-byte words go to successive banks

– Bank index:
• (8B word index) mod 32

• (4B word index) mod (32*2)

• (byte address) mod (32*8)

– Given the 8 least-significant address bits: ...BBBBBxxx
• xxx selects the byte within an 8-byte word

• BBBBB selects the bank

• Higher bits select a “row” within a bank

© 2012, NVIDIA 92

Address Mapping in 8-byte Mode

© 2013, NVIDIA 93

0 1

64 65

Bank-0

2 3

Bank-1

4 5

Bank-2

62 63

Bank-31

6 7

Bank-3

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28 32 38

9

40

Data:
 (or 4B-word index)

Byte-address:

Kepler 4-byte Bank Mode

• Understanding this mapping details matters only if you’re trying
to get 8-byte throughput in 4-byte mode
– For all else just think that you have 32 banks, 4-bytes wide

• Mapping addresses to banks:
– Successive 4-byte words go to successive banks

• We have to choose between two 4-byte “half-words” for each bank
– “First” 32 4-byte words go to lower half-words
– “Next” 32 4-byte words go to upper half-words

– Given the 8 least-significant address bits: ...HBBBBBxx
• xx selects the byte with a 4-byte word
• BBBBB selects the bank
• H selects the half-word within the bank
• Higher bits select the “row” within a bank

© 2012, NVIDIA 94

Address Mapping in 4-byte Mode

© 2013, NVIDIA 95

0 32

64 128

Bank-0

1 33

65

Bank-1

2 34

Bank-2

31 63

Bank-31

3 35

Bank-3

0 1 2 3 4 5 6 7 8

0 4 8 12 16 20 24 28 32 38

9

40

Data:
 (or 4B-word index)

Byte-address:

Shared Memory Bank Conflicts

• A bank conflict occurs when:
– 2 or more threads in a warp access different 8-B words in the same

bank
• Think: 2 or more threads access different “rows” in the same bank

– N-way bank conflict: N threads in a warp conflict
• Instruction gets replayed (N-1) times: increases latency

• Worst case: 32-way conflict → 31 replays, latency comparable to DRAM

• Note there is no bank conflict if:
– Several threads access the same word

– Several threads access different bytes of the same word

© 2012, NVIDIA 96

SMEM Access Examples

© 2012, NVIDIA 97

Addresses from a warp: no bank conflicts
 One address access per bank

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

SMEM Access Examples

© 2012, NVIDIA 98

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: no bank conflicts
 One address access per bank

SMEM Access Examples

© 2012, NVIDIA 99

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: no bank conflicts
 Multiple addresses per bank, but within the same word

SMEM Access Examples

© 2012, NVIDIA 100

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: 2-way bank conflict
 2 accesses per bank, fall in two different words

SMEM Access Examples

© 2012, NVIDIA 101

Bank-0 Bank-1 Bank-2 Bank-31 Bank-3

Addresses from a warp: 3-way bank conflict
 4 accesses per bank, fall in 3 different words

Case Study 3: Matrix Transpose

• Staged via SMEM to coalesce GMEM addresses
– 32x32 threadblock, double-precision values

– 32x32 array in shared memory

• Initial implementation:
– A warp reads a row of values from GMEM, writes to a row of

SMEM

– Synchronize the threads in a block

– A warp reads a column of from SMEM, writes to a row in
GMEM

© 2012, NVIDIA 102

Case Study 3: Matrix Transpose

• 32x32 SMEM array

• Warp accesses a column:
– 32-way bank conflicts (threads in a warp access the same bank)

31

2 1 0

31 2 1 0

31 2 1 0

warps:
0 1 2 31

Bank 0
Bank 1
 …
Bank 31

2 0 1

31

Number indentifies which warp is accessing data
Color indicates in which bank data resides

Case Study 3: Matrix Transpose

• Add a column for padding:
– 32x33 SMEM array

• Warp accesses a column:
– 32 different banks, no bank conflicts

31 2 1 0

31 2 1 0

31 2 1 0

 warps:
0 1 2 31 padding

Bank 0
Bank 1
 …
Bank 31

31 2 0 1

Number indentifies which warp is accessing data
Color indicates in which bank data resides

Case Study 3: Matrix Transpose

• Remedy:
– Simply pad each row of SMEM array with an extra element

• 32x33 array, as opposed to 32x32
• Effort: 1 character, literally

– Warp access to SMEM
• Writes still have no bank conflicts:

– threads access successive elements

• Reads also have no bank conflicts:
– Stride between threads is 17 8-byte words, thus each goes to a different bank

• Speedup: ~2x
– Note that the code has 2 gmem accesses and 2 smem accesses per

thread
– Removing 32-way bank conflicts cut time in half: implies bank conflicts

were taking as long as gmem accesses

© 2012, NVIDIA 105

Summary: Shared Memory

• Shared memory is a tremendous resource
– Very high bandwidth (terabytes per second)
– 20-30x lower latency than accessing GMEM
– Data is programmer-managed, no evictions by hardware

• Performance issues to look out for:
– Bank conflicts add latency and reduce throughput

• Many-way bank conflicts can be very expensive
– Replay latency adds up, can become as long as DRAM latency
– However, few code patterns have high conflicts, padding is a very simple

and effective solution

– Use profiling tools to identify bank conflicts

© 2012, NVIDIA 106

Exposing sufficient parallelism

© 2012, NVIDIA 107

Kepler: Level of Parallelism Needed

• To saturate instruction bandwidth:

– Fp32 math: ~1.7K independent instructions per SM

– Lower for other, lower-throughput instructions

– Keep in mind that Kepler SM can track up to 2048 threads

• To saturate memory bandwidth:

– 100+ independent lines per SM

© 2012, NVIDIA 108

Exposing Sufficient Parallelism

• What hardware ultimately needs:
– Arithmetic pipes:

• sufficient number of independent instructions
– accommodates multi-issue and latency hiding

– Memory system:
• sufficient requests in flight to saturate bandwidth

• Two ways to increase parallelism:
– More independent work within a thread (warp)

• ILP for math, independent accesses for memory

– More concurrent threads (warps)

© 2012, NVIDIA 109

Occupancy

• Occupancy: number of concurrent threads per SM
– Expressed as either:

• the number of threads (or warps),
• percentage of maximum threads

• Determined by several factors
– (refer to Occupancy Calculator, CUDA Programming Guide for full details)
– Registers per thread

• SM registers are partitioned among the threads

– Shared memory per threadblock
• SM shared memory is partitioned among the blocks

– Threads per threadblock
• Threads are allocated at threadblock granularity

© 2012, NVIDIA 110

Kepler SM resources
– 64K 32-bit registers
– Up to 48 KB of shared memory
– Up to 2048 concurrent threads
– Up to 16 concurrent threadblocks

Occupancy and Performance

• Note that 100% occupancy isn’t needed to reach
maximum performace
– Once the “needed” occupancy is reached, further increases

won’t improve performance

• Needed occupancy depends on the code
– More independent work per thread -> less occupancy is

needed

– Memory-bound codes tend to need more occupancy
• Higher latency than for arithmetic, need more work to hide it

© 2012, NVIDIA 111

Exposing Parallelism: Grid Configuration

• Grid: arrangement of threads into threadblocks

• Two goals:
– Expose enough parallelism to an SM

– Balance work across the SMs

• Several things to consider when launching kernels:
– Number of threads per threadblock

– Number of threadblocks

– Amount of work per threadblock

© 2012, NVIDIA 112

Threadblock Size and Occupancy

• Threadblock size is a multiple of warp size (32)
– Even if you request fewer threads, HW rounds up

• Threadblocks can be too small
– Kepler SM can run up to 16 threadblocks concurrently

– SM may reach the block limit before reaching good occupancy
• Example: 1-warp blocks -> 16 warps per Kepler SM (probably not enough)

• Threadblocks can be too big
– Quantization effect:

• Enough SM resources for more threads, not enough for another large block

• A threadblock isn’t started until resources are available for all of its threads

© 2012, NVIDIA 113

Threadblock Sizing

• SM resources:
– Registers
– Shared memory

© 2012, NVIDIA 114

Number of warps allowed by SM resources
Too few
threads
per block

Too many
threads
per block

Case Study 2

Waves and Tails

• Wave of threadblocks
– A set of threadblocks that run concurrently on GPU
– Maximum size of the wave is determined by:

• How many threadblocks can fit on one SM
– Number of threads per block
– Resource consumption: registers per thread, SMEM per block

• Number of SMs

• Any grid launch will be made up of:
– Some number of full waves
– Possibly one tail: wave with fewer than possible blocks

• Last wave by definition
• Happens if the grid size is not divisible by wave size

© 2012, NVIDIA 115

Tail Effect

• Tail underutilizes GPU
– Impacts performance if tail is a significant portion of time

• Example:
– GPU with 8 SMs
– Code that can run 1 threadblock per SM at a time

• Wave size = 8 blocks

– Grid launch: 12 threadblocks

• 2 waves:
– 1 full
– Tail with 4 threadblocks

• Tail utilizes 50% of GPU, compared to full-wave
• Overall GPU utilization: 75% of possible

© 2012, NVIDIA 116

SM

time

wave 0 wave 1 (tail)

Tail Effect

• A concern only when:
– Launching few threadblocks (no more than a few waves)
– Tail effect is negligible when launching 10s of waves

• If that’s your case, you can ignore the following info

• Tail effect can occur even with perfectly-sized grids
– Threadblocks don’t stay in lock-step

• To combat tail effect:
– Spread the work of one thread among several threads

• Increases the number of blocks -> increases the number of waves

– Spread the threads of one block among several
• Improves load balancing during the tail

– Launch independent kernels into different streams
• Hardware will execute threadblocks from different kernels to fill the GPU

© 2012, NVIDIA 117

Tail Effect: Large vs Small Threadblocks

© 2012, NVIDIA 118

 2 waves of threadblocks

— Tail is running at 25% of possible

— Tail is 50% of time

 Could be improved if the tail work could be
better balanced across SMs

 4 waves of threadblocks

— Tail is running at 75% of possible

— Tail is 25% of time

 Tail work is spread across more
threadblocks, better balanced across SMs

 Estimated speedup: 1.5x (time reduced by 33%)
wave 0 wave 1 (tail)

wave 0 wave 1 (tail)

Tail Effect: Few vs Many Waves of Blocks

© 2012, NVIDIA 119

SM

80% of time code runs at 100% of its ability, 20% of time it runs at 50% of ability: 90% of possible

95% of time code runs at 100% of its ability, 5% of time it runs at 50% of ability: 97.5% of possible

time

Takeaways

• Threadblock size choice:
– Start with 128-256 threads per block

• Adjust up/down by what best matches your function
• Example: stencil codes prefer larger blocks to minimize halos

– Multiple of warp size (32 threads)
– If occupancy is critical to performance:

• Check that block size isn’t precluding occupancy allowed by register and
SMEM resources

• Grid size:
– 1,000 or more threadblocks

• 10s of waves of threadblocks: no need to think about tail effect
• Makes your code ready for several generations of future GPUs

© 2012, NVIDIA 120

Summary

• What you need for good GPU performance
– Expose sufficient parallelism to keep GPU busy

• General recommendations:
– 1000+ threadblocks per GPU
– 1000+ concurrent threads per SM (32+ warps)

– Maximize memory bandwidth utilization
• Pay attention to warp address patterns (
• Have sufficient independent memory accesses to saturate the bus

– Minimize warp divergence
• Keep in mind that instructions are issued per warp

• Use profiling tools to analyze your code

 © 2013, NVIDIA 121

Additional Resources

• Previous GTC optimization talks
– Have different tips/tricks, case studies
– GTC 2012: GPU Performance Analysis and Optimization

• http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=#1450

– GTC 2010: Analysis-Driven Optimization:
• http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=#98

• GTC 2013 talks on performance analysis tools:
– S3011: Case Studies and Optimization Using Nsight Visual Studio Edition
– S3046: Performance Optimization Strategies for GPU-Accelerated Applications

• Kepler architecture white paper:
– http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf

• Miscellaneous:
– Webinar on register spilling:

• Slides: http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
• Video: http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4

– GPU computing webinars: https://developer.nvidia.com/gpu-computing-webinars

© 2013, NVIDIA 122

http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=gpu+performance+analysis&searchItems=&sessionTopic=&sessionEvent=&sessionYear=&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.gputechconf.com/gtcnew/on-demand-gtc.php?searchByKeyword=analysis-driven&searchItems=&sessionTopic=&sessionEvent=&sessionYear=2010&sessionFormat=&submit=
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-GK110-Architecture-Whitepaper.pdf
http://developer.download.nvidia.com/CUDA/training/register_spilling.pdf
http://developer.download.nvidia.com/CUDA/training/CUDA_LocalMemoryOptimization.mp4
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars
https://developer.nvidia.com/gpu-computing-webinars

