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Whetting your appetite

1 import pycuda.driver as cuda
2 import pycuda.autoinit
3 import numpy
4
5 a = numpy.random.randn(4,4).astype(numpy.float32)
6 a gpu = cuda.mem alloc(a.nbytes)
7 cuda.memcpy htod(a gpu, a)

[This is examples/demo.py in the PyCUDA distribution.]
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Whetting your appetite

1 mod = cuda.SourceModule(”””
2 global void twice( float ∗a)
3 {
4 int idx = threadIdx.x + threadIdx.y∗4;
5 a[ idx ] ∗= 2;
6 }
7 ”””)
8
9 func = mod.get function(”twice”)

10 func(a gpu, block=(4,4,1))
11
12 a doubled = numpy.empty like(a)
13 cuda.memcpy dtoh(a doubled, a gpu)
14 print a doubled
15 print a

Compute kernel
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Why do Scripting for GPUs?

GPUs are everything that scripting
languages are not.

Highly parallel
Very architecture-sensitive
Built for maximum FP/memory
throughput

→ complement each other

CPU: largely restricted to control
tasks (∼1000/sec)

Scripting fast enough

Python + CUDA = PyCUDA

Python + OpenCL = PyOpenCL

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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Scripting: Python

One example of a scripting language: Python

Mature

Large and active community

Emphasizes readability

Written in widely-portable C

A ‘multi-paradigm’ language

Rich ecosystem of sci-comp related
software
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Scripting: Interpreted, not Compiled

Program creation workflow:

Edit

Compile

Link

Run
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PyCUDA: Workflow

Edit

PyCUDA

Run

SourceModule("...")

Cache?

nvcc

no

.cubin

Upload to GPU

Run on GPU
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How are High-Performance Codes constructed?

“Traditional” Construction of
High-Performance Codes:

C/C++/Fortran
Libraries

“Alternative” Construction of
High-Performance Codes:

Scripting for ‘brains’
GPUs for ‘inner loops’

Play to the strengths of each
programming environment.
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PyCUDA Philosophy

Provide complete access

Automatically manage resources

Provide abstractions

Check for and report errors
automatically

Full documentation

Integrate tightly with numpy

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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What’s this “numpy”, anyway?

Numpy: package for large,
multi-dimensional arrays.

Vectors, Matrices, . . .

A+B, sin(A), dot(A,B)

la.solve(A, b), la.eig(A)

cube[:, :, n-k:n+k], cube+5

All much faster than functional equivalents in
Python.

“Python’s MATLAB”:
Basis for SciPy, plotting, . . .
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gpuarray: Simple Linear Algebra

pycuda.gpuarray:

Meant to look and feel just like numpy.

gpuarray.to gpu(numpy array)

numpy array = gpuarray.get()

+, -, ∗, /, fill, sin, exp, rand,
basic indexing, norm, inner product, . . .

Mixed types (int32 + float32 = float64)

print gpuarray for debugging.

Allows access to raw bits

Use as kernel arguments, textures, etc.
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Whetting your appetite, Part II

1 import numpy
2 import pycuda.autoinit
3 import pycuda.gpuarray as gpuarray
4
5 a gpu = gpuarray.to gpu(
6 numpy.random.randn(4,4).astype(numpy.float32))
7 a doubled = (2∗a gpu).get()
8 print a doubled
9 print a gpu
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gpuarray: Elementwise expressions

Avoiding extra store-fetch cycles for elementwise math:

from pycuda.curandom import rand as curand
a gpu = curand((50,))
b gpu = curand((50,))

from pycuda.elementwise import ElementwiseKernel
lin comb = ElementwiseKernel(

” float a, float ∗x, float b, float ∗y, float ∗z”,
”z[ i ] = a∗x[i ] + b∗y[i ]”)

c gpu = gpuarray.empty like (a gpu)
lin comb(5, a gpu, 6, b gpu, c gpu)

assert la .norm((c gpu − (5∗a gpu+6∗b gpu)).get()) < 1e−5
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gpuarray: Reduction made easy

Example: A scalar product calculation

from pycuda.reduction import ReductionKernel
dot = ReductionKernel(dtype out=numpy.float32, neutral=”0”,

reduce expr=”a+b”, map expr=”x[i]∗y[i]”,
arguments=”const float ∗x, const float ∗y”)

from pycuda.curandom import rand as curand
x = curand((1000∗1000), dtype=numpy.float32)
y = curand((1000∗1000), dtype=numpy.float32)

x dot y = dot(x, y). get()
x dot y cpu = numpy.dot(x.get(), y.get())

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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PyCUDA: Vital Information

http://mathema.tician.de/

software/pycuda

Complete documentation

MIT License
(no warranty, free for all use)

Requires: numpy, Python 2.4+
(Win/OS X/Linux)

Support via mailing list
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OpenCL’s perception problem

OpenCL does not presently get the
credit it deserves.

Single abstraction works well for
GPUs, CPUs

Vendor-independence

Compute Dependency DAG

A JIT C compiler baked into a
library

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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Introducing. . . PyOpenCL

PyOpenCL is
“PyCUDA for OpenCL”

Complete, mature API wrapper

Has: Arrays, elementwise
operations, RNG, . . .

Near feature parity with PyCUDA

Tested on all available
Implementations, OSs

http://mathema.tician.de/

software/pyopencl

OpenCL

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python

http://mathema.tician.de/software/pyopencl
http://mathema.tician.de/software/pyopencl


GPU Scripting PyOpenCL News RTCG Showcase

Introducing. . . PyOpenCL

Same flavor, different recipe:

import pyopencl as cl , numpy

a = numpy.random.rand(50000).astype(numpy.float32)

ctx = cl. create some context()
queue = cl.CommandQueue(ctx)

a buf = cl. Buffer(ctx , cl .mem flags.READ WRITE, size=a.nbytes)
cl . enqueue write buffer (queue, a buf , a)

prg = cl.Program(ctx, ”””
kernel void twice( global float ∗a)
{

int gid = get global id (0);
a[gid ] ∗= 2;
}”””). build ()

prg. twice(queue, a.shape, None, a buf). wait()
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Step 1: Download

Hot off the presses:

PyCUDA 0.94.1

PyOpenCL 0.92

All the goodies from this talk, plus

Supports all new features in CUDA
3.0, 3.1, 3.2rc, OpenCL 1.1

Allows printf()

(see example in Wiki)

New stuff shows up in git very quickly.
Still needed: better release schedule.

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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Step 2: Installation

PyCUDA and PyOpenCL no longer
depend on Boost C++

Eliminates major install obstacle

Easier to depend on PyCUDA and
PyOpenCL

easy install pyopencl works
on Macs out of the box

Boost is still there–just not
user-visible by default.

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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Step 3: Usage

Complex numbers

. . . in GPUArray

. . . in user code
(pycuda-complex.hpp)

If/then/else for GPUArrays

Support for custom device pointers

Smarter device picking/context
creation

PyFFT: FFT for PyOpenCL and
PyCUDA

scikits.cuda: CUFFT, CUBLAS,
CULA
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Sparse Matrix-Vector on the GPU

New feature in 0.94:
Sparse matrix-vector
multiplication

Uses “packeted format”
by Garland and Bell (also
includes parts of their code)

Integrates with scipy.sparse.

Conjugate-gradients solver
included

Deferred convergence
checking
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Step 4: Debugging

New in 0.94.1: Support for CUDA gdb:

$ cuda-gdb --args python -m

pycuda.debug demo.py

Automatically:

Sets Compiler flags

Retains source code

Disables compiler cache

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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GPU Programming: Implementation Choices

Many difficult questions

Insufficient heuristics

Answers are hardware-specific and
have no lasting value

Proposed Solution: Tune automatically
for hardware at run time, cache tuning
results.

Decrease reliance on knowledge of
hardware internals

Shift emphasis from
tuning results to tuning ideas
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Metaprogramming

Idea

Python Code

GPU Code

GPU Compiler

GPU Binary

GPU

Result

Machine

Human

In GPU scripting,
GPU code does
not need to be
a compile-time

constant.

(Key: Code is data–it wants to be
reasoned about at run time)

Good for code
generation

PyCUDAPyOpenCL
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Machine-generated Code

Why machine-generate code?

Automated Tuning
(cf. ATLAS, FFTW)

Data types

Specialize code for given problem

Constants faster than variables
(→ register pressure)

Loop Unrolling

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python
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RTCG via Templates

from jinja2 import Template
tpl = Template(”””

global void twice({{ type name }} ∗tgt)
{

int idx = threadIdx.x +
{{ thread block size }} ∗ {{ block size }}
∗ blockIdx .x;

{% for i in range( block size ) %}
{% set offset = i∗ thread block size %}
tgt [ idx + {{ offset }}] ∗= 2;

{% endfor %}
}”””)

rendered tpl = tpl . render(
type name=”float”, block size =block size ,
thread block size =thread block size )

smod = SourceModule(rendered tpl)
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Discontinuous Galerkin Method

Let Ω :=
⋃

i Dk ⊂ Rd .

Goal

Solve a conservation law on Ω: ut +∇ · F (u) = 0

Example

Maxwell’s Equations: EM field: E (x , t), H(x , t) on Ω governed by

∂tE −
1

ε
∇× H = − j

ε
, ∂tH +

1

µ
∇× E = 0,

∇ · E =
ρ

ε
, ∇ · H = 0.
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GPU DG Showcase

Eletromagnetism

Poisson

CFD
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GPU DG Showcase

Eletromagnetism

Poisson

CFD

Shock-laden flows
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GPU-DG: Performance on GTX280
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16 T10s vs. 64 = 8× 2× 4 Xeon E5472
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Flop Rates and Speedups: 16 GPUs vs 64 CPU cores
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Tim Warburton: Shockingly fast and accurate
CFD simulations
Wednesday, 11:00–11:50
(Several posters/talks on GPU-DG at GTC.)
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Computational Visual Neuroscience

Nicolas Pinto: Easy GPU Metaprogramming:
A Case Study in Biologically-Inspired Com-
puter Vision
Thursday, 10:00–10:50, Room A1
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Computational Visual Neuroscience

Nicolas Pinto: Easy GPU Metaprogramming:
A Case Study in Biologically-Inspired Com-
puter Vision
Thursday, 10:00–10:50, Room A1
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Copperhead

from copperhead import ∗
import numpy as np

@cu
def axpy(a, x, y):
return [a ∗ xi + yi for xi , yi in zip(x, y)]

x = np.arange(100, dtype=np.float64)
y = np.arange(100, dtype=np.float64)

with places .gpu0:
gpu = axpy(2.0, x, y)

with places .here :
cpu = axpy(2.0, x, y)

Bryan Catanzaro: Copperhead: Data-Parallel
Python for the GPU
Wednesday, 15:00–15:50 (next slot!), Room N
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Conclusions

Fun time to be in computational science

Even more fun with Python and Py{CUDA,OpenCL}
With no compromise in performance

GPUs and scripting work well together

Enable Metaprogramming

The “Right” way to develop computational codes

Bake all runtime-available knowledge into code

Andreas Klöckner PyCUDA: Even Simpler GPU Programming with Python



GPU Scripting PyOpenCL News RTCG Showcase Python+GPUs in Action Conclusions

Where to from here?

More at. . .

→ http://mathema.tician.de/

CUDA-DG

AK, T. Warburton, J. Bridge, J.S. Hesthaven, “Nodal
Discontinuous Galerkin Methods on Graphics Processors”,
J. Comp. Phys., 2009.

GPU RTCG

AK, N. Pinto et al. PyCUDA: GPU Run-Time Code Generation for
High-Performance Computing, in prep.
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Questions?

?

Thank you for your attention!

http://mathema.tician.de/

image credits
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