ADVANCED OPENACC A
PROGRAMMING

JEFF LARKIN, NVIDIA DEVELOPER TECHNOLOGIES

v

AGENDA

» OpenACC Review

» Optimizing OpenACC Loops
> Routines

» Update Directive

> Asynchronous Programming
> Multi-GPU Programming

> OpenACC Interoperability
» Atomic Directive

> Misc. Advice & Techniques
> Next Steps

OPENACC REVIEW

WHAT ARE COMPILER DIRECTIVES?

int main() { Programmer inserts compiler hints.

Execution Begins on the CPU.
do_serial stuff() DataCantpEbezdGeiveratesdshid God&PU.

for(int i=0; i < BIGN; i++)
{

..compute intensive work

}

NVIDIA.

do more serial stuff();

Data and Execution returns to the CPU.

OPENACC:
THE STANDARD FOR GPU DIRECTIVES

» Simple: Directives are the easy path to accelerate compute intensive
applications

» Open: OpenACC is an open GPU directives standard, making GPU
programming straightforward and portable across parallel and multi-core
processors

> Portable: GPU Directives represent parallelism at a high level, allowing
portability to a wide range of architectures with the same code.

DIRECTIVES FOR ACCELERATORS

AU JACOBI ITERATION: C CODE

while (err > tol && iter < iter max) {
err=0.0;

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j][i+1] + A[j][i-1] +
A[3-1][1i] + A[3+1][i]);

err = max(err, abs(Anew[j]l[i] - A[J]1[i]));
}

4
4
4
4

}

for(int j = 1; j < n-1; j++) {
for(int 1 = 1; i < m-1; i++) {
A[J]l[i] = Anew[]][i];

}
}

iter++;

MRS |\ op1: FINAL CODE

#pragma acc data copy(A) create (Anew)
while (err > tol && iter < iter max) ({
err=0.0;

#pragma acc parallel loop reduction (max:err)
for(int j = 1; j < n-1; j++) {
for(int i = 1; i < m-1; i++) {

Anew[j][i] = 0.25 * (A[j]1[i+1] + A[j]1[i-1] +
A[j-1][1] + A[J+1]1[1i]):

err = max(err, abs(Anew[j]l[i] - A[J]1[i]));
}
}

#pragma acc parallel loop
for(int j = 1; j < n-1; j++) {
for(int i = 1; 1 < m-1; i++) {
A[j]l[i] = Anew[]j][i];
}
}

iter++;
}

Speed-Up (Higher is Better)

Socket/Socket: 6.24X

Intel Xeon E5-2698 v3 @ 2.30GHz (Haswell)
VS.
NVIDIA Tesla K40

5.00X

1.00X n 0.82X
0.00X

SINGLE THREAD 8 THREADS OPENACC (STEP 1)

OPENACC (STEP 2)

4 \

|dentify
Available
Parallelism

- v \
4)
Parallelize
Loops with
OpenACC
- v
~ A /
Optimize
Data Locality
. /

SPARSE MATRIX/VECTOR PRODUCT

99

100
101
102
103
104
105
106
107
108
109
110

do i=1l,a%num_rows
tmpsum = 0.0d0
row_start = arow_offsets (i)
row end = arow offsets(i+l)-1
do j=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

» Performs Mat/Vec product

of sparse matrix

> Matrices are stored in a

row-compressed format

-~ Parallelism per-row will

vary, but is generally not
very large

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120

PARALLELIZED SPMV

!Sacc parallel loop present (arow_offsets,acols,acoefs) &
'Saccé private (row_start,row_end,acol,acoef,xcoef) &
!Sacc& reduction (+:tmpsum)
do i=1l,a%num_rows
tmpsum = 0.0dO
row_start = arow_offsets(i)
row_end = arow_offsets(i+l)-1
do j=row_start,row_end
acol = acols(3j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

- Data already on device
» Compiler has vectorized

the loop at 113 and

selected a vector length
of 256

- Total application speed-

up (including other
accelerated routines):
1.08X

OPENACC‘ 3 LEVELS OF PARALLELISM

Gang

Gang

« Vector threads work in
lockstep (SIMD/SIMT
parallelism)

« Workers compute a vector

* Gangs have 1 or more
workers and share resources
(such as cache, the
streaming multiprocessor,
etc.)

* Multiple gangs work
independently of each other

OPENACC GANG, WORKER, VECTOR CLAUSES

» gang, worker, and vector can be added to a loop clause

> A parallel region can only specify one of each gang, worker, vector

> Control the size using the following clauses on the parallel region

> num_gangs(n), num_workers(n), vector_length(n)

(;;ragma acc kernels loop gané‘\

for (int i = 0; 1 < n; ++1i)
#pragma acc loop vector(128)
for (int j = 0; j < n; ++3j)

o y

(;;ragma acc parallel vector_length(128;\
#pragma acc loop gang
for (int i = 0; 1 < n; ++1i)

#pragma acc loop vector

for (int j = 0; jJ < n; ++3j)

. ...)

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

OPTIMIZED SPMV VECTOR LENGTH

!$acc parallel loop present(arow_offsets,acols,acoefs) &
'Saccé private (row_start,row_end,acol,acoef,xcoef) &
!Sacc& vector length(32)
do i=1l,a%num_rows
tmpsum = 0.0dO
row_start = arow_offsets(i)
row_end = arow_offsets(i+l)-1
!Sacc loop vector reduction (+:tmpsum)
do Jj=row_start,row_end
acol = acols(j)
acoef = acoefs(j)
xcoef = x(acol)
tmpsum = tmpsum + acoef*xcoef
enddo
y(i) = tmpsum
enddo

3.50X
3.00X
2.50X
% 2.00X

1.50X

Speed

1.00X

0.50X

0.00X

1024 512 256 128 64 32
OpenACC Vector Length for SPMV

PERFORMANCE LIMITER: OCCUPANCY

% NVIDIA Visual Profiler
File View Run Help

= = TV~ < > T

§ *NewSessionl 22 = O | = Properties &2

=| [0] Tesla K40m || select or highlight a single interval to see properties
=| Context 1 (CUDA)
MemCpy (HtoD)
MemCpy (DtoH)
=I Compute]]
96.1% matvec_10...
2 5% waxpby_50_ id]
| 0|

" Analysis &3 - o Details | & Console | T Settings

] iy, Export PDF Report Results

i GPU Utilization Is Limited By Block Size

The kernel has a block size of 32 threads. This block size is likely preventing the kernel from fully utilizing the GPU. Device "Tesla
2. Performance-Critical Kernels K40m" can simultaneously execute up to 16 blocks on each SM. Because each block uses 1 warp to execute the block's 32
threads, the kernel is using only 16 warps on each SM. Chart "Varying Block Size" below shows how changing the block size will
3. Compute, Band...or Latency Bound | change the number of warps that can execute on each SM.

Optimization: Increase the number of threads in each block to increase the number of warps that can execute on each SM. More...

; - Variable Achieved Theoretical Device Limit Grid Size: [65535,1,1] (65535 blocks)Block Size: [32,1,
Instruction and memory latency limit the

performance of a kernel when the GPU does Occupancy Per SM
not have enough work to keep busy The
performance of latency-limited kernels can Active Blocks
often be improved by increasing occupancy.
Occupancy is a measure of how many warps
the kernel has active on the GPU, relative to
the maximum number of warps supported
by the GPU. Theoretical occupancy provides
an upper bound while achieved occupancy
indicates the kernel's actual occupancy The Occupancy
results at right indicate that occupancy can
be improved by increasing the number of Warps
threads in each block

1. CUDA Application Analysis

4. Instruction and Memory Latency

Active Warps

Active Threads

Threads/Block

A, Examine Stall Reasons

Warps/Block

When both achieved and theoretical occupancy are

high, the stall reasons can provide insight into why -
latency is still an issue for the kermel. For this kernel, Block Limit
examining stalls may not be useful until you

106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

INCREASED PARALLELISM WITH WORKERS

!$acc parallel loop present(arow_offsets,acols,acoefs) & 2.00X

!$accé& private(row_start,row_end,acol,acoef,xcoef) &

6X to Original |

1.80X
!Sacc& gang worker vector length(32) num workers (32)
do i=1,a%num_rows 1.60X
tmpsum = 0.0dO
1.40X
row_start = arow_offsets(i)
row_end = arow_offsets(i+l)-1 Q_LZOX
S
!1Sacc loop vector reduction (+:tmpsum) o 1.00X
q_) .
do j=row start,row end 8_
- - wn
acol = acols(j) 0.80X
acoef = acoefs(j) 0.60X
xcoef = x(acol)
0.40X
tmpsum = tmpsum + acoef*xcoef
enddo 0.20X
y(i) = tmpsum
0.00X
enddo 7 4 8 16 32

Number of Workers

PERFORMANCE LIMITER: COMPUTE

%, NVIDIA Visual Profiler =n Eoh ="

File View Run Help |

O &y &y &
% *NewSessionl 2 = O | = properties 52 =0
75s
¥ MemCpy (HtoD) ~| select or highlight a single interval to see properties
T MemCpy (DtoH)

= Campute '/ ([| |
T 92.6% matvec_10.
4.8% waxpby_50_...

2.4% dot_35_gpu
" 0.2% dot_35_gpu_

i Analysis &2 . [Details | & Console | [y Settings
Results

’;T = I, Export PDF Report

i Kernel Performance Is Bound By Compute
For device "Tesla K40m" the kernel's memory utilization is significantly lower than its compute utilization. These utilization levels
2. Performance-Critical Kernels indicate that the performance of the kernel is most likely being limited by computation on the SMs.

1. CUDA Application Analysis

3. Compute, Band...or Latency Bound

The first step in analyzing an individual =
kernel is to determine if the performance of
the kernel is bounded by computation,
memory bandwidth, or instructionfmemory
latency The results at right indicate that the
performance of kernel "matvec_106_gpu" is
most likely limited by compute. [Memory operations
I Control-flow operations
I Arithmetic operations

I Memory (Load/Store Instruc

dy, Perform Compute Analysis

Utilization

The most likely bottleneck to performance for this
kernel is compute so you should first perform
compute analysis to determine how it is limiting
performance.

iy, Perform Latency Analysis |

dy Perform Memory Bandwidth Ana\ysis| _

Instruction and memory latency and memory
bandwidth are likely not the primary performance
bottlenecks for this kernel, but you may still want to
perform those analyses. ﬂ

PERFORMANCE LIMITER: PARALLELISM

% NVIDIA Visual Profiler
File View Run Help

.Y &) e

§ *NewSessionl 22 = O | = Properties &2
755

T MemCpy (HtoD) || select or highlight a single interval to see properties
T MemCpy (DtoH)
=| Compute I e e e I I
I 92.6% matvec_10..
4.8% waxpby 50_..
2.4% dot_35_gpu
" 0.2% dot_35_gpu_...

" Analysis &3 - o Details | & Console | T Settings

E Iy, Export PDF Report Results

i Low Warp Execution Efficiency

Warp execution efficiency is the average percentage of active threads in each executed warp. Increasing warp execution
efficiency will increase utilization of the GPU's compute resources. The kernel's warp execution efficiency of 69.5% is less than
100% due to divergent branches and predicated instructions. If predicated instructions are not taken into account the warp
3. Compute, Band...or Latency Bound | execution efficiency for these kemnels is 90.8%.

Optimization: Reduce the amount of intra-warp divergence and predication in the kemel. More...

1. CUDA Application Analysis

2. Performance-Critical Kernels

4. Compute Resources

GPU compute resources limit the i Function Unit Utilization
performance of a kernel when thase Different types of instructions are executed on different function units within each SM. Performance can be limited if a function
Eﬁ‘ﬁ“Li:i:srslj'r‘sszﬁ:'ri”;f;dpﬁ%rs'g utilized. unit is over-used by the instructions executed by the kernel. The following results show that the kernel's performance is not
eﬂ"lmpent:lyr when all threads in a warp have limited by overuse of any funCtlon unit. .

Load/Store - Load and store instructions for local, shared, global, constant, etc. memory.

the same branching and predication ; i - - e -
behavior. The results at right indicate that a Arithmetic - All arithmetic instructions including integer and floating-point add and multiply, logical and binary operations,

significant fraction of the available compute etc.

performance is being wasted because Control-Flow - Direct and indirect branches, jumps, and calls.
branch and predication behavior is differing Texture - Texture operations.

for threads within a warp.

Iy, Show Kernel Profile

The kernel profile shows the execution count,
inactive threads, and predicated threads for each
source and assembly line of the kernel. Using this
information you can pinpoint portions of your kernel [
that are making inefficient use of compute resource

due to divergence and predication

[=

SPEED-UP STEP BY STEP

7.00X
Identify Parallelize Optimize Data Optimize Loops

Parallelism Locality

6.00X

5.00X

4.00X

Speed-up

3.00X

2.00X

1.00X

0.00X

OPENACC COLLAPSE CLAUSE

collapse(n): Transform the following n tightly nested loops into one,
flattened loop.

« Useful when individual loops lack sufficient parallelism or more than 3
loops are nested (gang/worker/vector)

for (int i=0; i<N; i++) for (int ij=0; 1ij<N*N; ij++)

for (int j=0; IJ<N; J++)

A Loops must be tightly nested

NEW CASE STUDY: MANDELBROT SET

» Application generates the image to
the right.

> Each pixel in the image can be
independently calculated.

» Skills Used:
> Parallel Loop
> Data Region
> Update Directive
> Asynchronous Pipelining

MANDELBROT CODE

// Calculate value for a pixel
unsigned char mandelbrot(int Px, int Py) {

double x0=xmin+Px*dx; double yO=ymin+Py*dy;
double x=0.0; double y=0.0; The mandelbrot() function calculates
for (int i=0;x*x+y*y<4.0 && i<MAX ITERS;i++) { the Color for each p'lxel.

double xtemp=x*x-y*y+x0;
y=2*x*y+yO0;
x=xtemp;
}
return (double)MAX COLOR*i/MAX ITERS;
}
// Used in main()

for (int y=0;y<HEIGHT;y++) {

Within main() there is a doubly-nested
A N S loop thajc calculates each pixel
; independently.

for (int x=0;x<WIDTH;x++) {

ROUTINES

OPENACC ROUTINE DIRECTIVE

Specifies that the compiler should generate a device copy of the
function/subroutine and what type of parallelism the routine contains.

Clauses:
» gang/worker/vector/seq
~ Specifies the level of parallelism contained in the routine.
» bind
» Specifies an optional name for the routine, also supplied at call-site
» no_host
> The routine will only be used on the device
» device type

> Specialize this routine for a particular device type.

MANDELBROT: ROUTINE DIRECTIVE

// mandelbrot.h » At function source:

#pragma acc routine se . .
RES g e 1 > Function needs to be built for
unsigned char mandelbrot(int Px, int Py); the GPU

» It will be called by each thread

// Used in main|()

(sequentially)
#pragma acc parallel loop
for (int y=0;y<HEIGHT;y++) { > At call the compiler needs to know:
for (int x=0;x<WIDTH;x++) { > Function will be available on
image [y*WIDTH+x]=mandelbrot (x,y) ; the GPU

} > It is a sequential routine

OPENACC ROUTINE: FORTRAN

module mandelbrot mod

The routine directive may appear
in a Fortran function or subroutine

implicit none

MECE [sp e I IS SRR tondc i Ll definition, or in an interface block.

integer, parameter :: WIDTH=16384

A T e e i The save attribute is not supported.
contains

Nested acc routines require the

routine directive within each nested
implicit none routine.

!Sacc routine (mandlebrot) seq

real (8) function mandlebrot (px,py)

end function mandlebrot

end module mandelbrot mod

BASELINE PROFILE

% NVIDIA Visual Profiler

‘ Roughly 25% of our
= time is spent

File View Run Help —] Copying, none of it
is overlapped.

L &l =, 'IID =y Y T +\ = ts [N E].S- —

‘. “timelined.nvp &1 ‘. *timelinel.nvp t “timeline2.nvp ". “timeline3.nvp El Properties I3
1.25 5 155 ¢ [0] Tesla K20X

—| Process 27617 i 4 Dwuration -

—| Thread 2885750720 Session 1984 < (1,9¢

Driver API | J{MHHARHEE costrearmsynche.. I IR 4 Overlap

Profiling Overhead | Kernel/Memcpy 5 04%

B [0] Tesla K20X Memcpy/Memcpy 5 0%

—| Context1 [CUDA) 4 Attributes

MemCpy [HtoD) = CoTTpaCapasy -

MemCay (DtoH) 4 Maximurms
I Mem o
py Threads per Block 1024

Shared Memory perl 48 KiB
Registers per Block

—| Compute
W 51.7% main_34_gpu
I 48.3% main_46_gpu Grid Dimensions

—=| Streams I Black Dimensions We,re Still mUCh

Stream & 4 Warps per Multipry

Stream 9 Blocks per Multipre faSter than the CPU

Stream 10 4 Multiprocessor

st 11 Multiprocessors because there’s a

o Clock Rate

lot of work.

PIPELINING DATA TRANSFERS

Two Independent Operations Serialized

Overlappmg Copying and Computation

PIPELINING MANDELBROT SET

> We only have 1 kernel, so there’s
nothing to overlap.

» Since each pixel is independent,
computation can be broken up

» Steps

1. Break up computation into
blocks along rows.

2. Break up copies according to
blocks

3. Make both computation and
copies asynchronous

24
25
26

27
28
29
30
31
32
33
34
35
36
37
38
39

STEP 1: BLOCKING COMPUTATION

numblocks = (argc > 1) ? atoi(argv[1l])

blocksize

HEIGHT / numblocks;

printf ("numblocks: %d, blocksize: %d\n",
numblocks, blocksize) ;

#pragma acc data copyout (image[:bytes])
for (int block=0; block < numblocks; block++)

{

}

int ystart = block * blocksize;
int yend = ystart + blocksize;
#pragma acc parallel loop

for (int y=ystart;y<yend;y++) {
for (int x=0;x<WIDTH;x++) {

}

}

image [y*WIDTH+x]=mandelbrot(x,y)

: 8;

Add a loop over blocks

Modify the existing row loop to
only work within blocks

- Add data region around blocking

loop to leave data local to the
device.

~ Check for correct results.

- NOTE: We don’t need to copy in

the array, so make it an explicit
copyout.

BLOCKING TIMELINE

& NVIDIA Visual Profiler
File View Run Help

LD e = iy, By S5 v | K =] [N @-S. =
‘. “timelinel.nvp ‘. *timelinel .nvp &2 t. *timeline2.nvp ‘. *timeline3.nvp
1.5 1.25s
Process 27769
=| Thread 2885750720
Driver APT
Profiling Overhead
[0] Tesla K20X
—| Context1 [CUDA)
U MemCpy [DtoH)
—| Compute

W 51.2% main_34_gpu

SV dsaxmainczory (MENNNNNS

=| Streams
Stream &]
Stream 9
Stream 10
Stream 11
Stream 12

= O || E properties 2
main_62_gpu
4 Duration
Session 1855 (1,850,43
Kernel 172,369 ms (17,
Invocations g8
Importance 48.8%

Now we have 8 kernel launches

and no longer copy data to the

device, but the execution time
has remained the same.

UPDATE DIRECTIVE

-OPENACC DATA REGIONS REVIEW

28 #ipragma acc data copyout (image| :bytes]) B

29 for (int block=0; block < numblocks; block++)

30 {

31 int ystart = block * blocksize;

32 int yend = ystart + blocksize; Data is shared
33 #pragma acc parallel loop = .
34 for (int y=ystart;y<yend;y++) { — within this
35 for (int x=0;x<WIDTH;x++) { region.
36 image [y*WIDTH+x]=mandelbrot (x,y) ;

37 }

38 }

39 }

OPENACC UPDATE DIRECTIVE

Programmer specifies an array (or part of an array) that should be refreshed
within a data region.

do something on device ()

4 Copy “a” from GPU to
!Sacc update self (a) CPU

Copy “a” from CPU to
GPU

!Sacc update device(a) ‘

STEP 2: COPY BY BLOCK

28 : e » Change the data region to only
29 for (int block=0; block < numblocks; block++)

30 ¢ create the array on the GPU

31 int ystart = block * blocksize; . c =

32 int yend = ystart + blocksize; | USG a,n update dlrectlve to COpy
33 individual blocks back to the
34 for (int y=ystart;y<yend;y++) { host when complete

35 for (int x=0;x<WIDTH;x++) {

36 image [y*WIDTH+x]=mandelbrot (x,y) ; » Check for correct results.

37 }

38 }

39 #pragma acc update
self (image[ystart*WIDTH:WIDTH*blocksize])
40 }

TIMELINE: UPDATING BY BLOCKS

& NVIDIA Visual Profiler

File View Run Help

L il = iy, By Yy v | =
t. “tirnelined.nvp t. "tirnelinel .nvp
—| Process 27920
—| Thread 2855750720
Drriver APT
Profiling Overhead

| [E] s [P
& “timelineZnvp 2 - “timeline3.nvp

1.255 @" 1755

B [0] Tesla K20X

—| Context 1 [CLIDA)
" MemCpy (DtoH)
— Compute
o 51.2% main_34_gpu
U 48.5% main_79_gpu
= Streams
Stream 3
Stream 9
Stream 10
Stream 11
Stream 12
Stream 13
Stream 14

=08

3

=nER(=<=

El Properties &3
[0] Tesla K20X

a Duration
Sescion 158755 (1,87
a Overlap
Kernel/Memcpy 5 0.5%
a Attributes
Compute Capability 3.5
4 Maximums
Threads per Block
5H
Re
ai

B We’re now

s updating between

« " blocks, but not
< overlapping.

M

ASYNCHRONOUS PROGRAMMING

OPENACC ASYNC AND WAIT

async(n): launches work asynchronously in queue n
wait(n): blocks host until all operations in queue n have completed

Can significantly reduce launch latency, enables pipelining and concurrent
operations

#pragma acc parallel loop async(1l)

#pragma acc parallel loop async(1l)
for(int 1=0; i<N; i++)

#pragma acc wait (1)
for (int i=0; i<N; i++)

STEP 3: GO ASYNCHRONOUS

sL _ » Make each parallel region

32 for(int block=0; block < numblocks; block++) asynchronous by placing].n

33 { .

34 int ystart = block * blocksize; different queues.

35 int d = tart + blocksi ;

36 T en o as;ﬁcs(;fjck) » Make each update asynchronous
37 for (int y=ystart;y<yend;y++) { by placing in same stream as

— AIE iR S SR agg) the parallel region on which it
39 image [y*WIDTH+x]=mandelbrot (x,y) ; d d

o } epends

s : ~ Synchronize for all to complete.

» Check for correct results.

async (block)

43 }

44 #pragma acc wait

TIMELINE: PIPELINING

% NVIDIA Visual Profiler
File View Run Help

g e K|EE&E
‘. “timelined.nvp t. “timelinel.nvp t. “timeline.nvp t. *timelined.nvp &2 = Properties &3

11s 1.2s 14 s 1.5 main_97_gpu

=| Process 28071

a Duration
—| Thread 2885750720 Session 1793 s(1,7934) _

Driver APL B [] [[| Kernel 172.387 ms (17.

Profiling Overhead Invocations 8
—=| [0] Tesla K20X Importance 48.8%
—| Context 1 [CUDA)
U MemCpy [DtoH) |

1
—| Compute .
o 51.2% main_34_gpu
I

L 9 48.8% main_97_gpu

=| Streams

Stream 9
Stream 10

e Notice the kernel launches

Stream 12

e | seem to take differing amounts
c of time. What if we tried

Stream 15

Stream 16 smaller blocks?

VARYING THE NUMBER OF BLOCKS

0.8

0.7

0.6

0.

—_—

(8]

-

w 0.
=
|_

0.

N

[O8)

0.

N

0.

—

o

2 4 8 16 32 64 128 256 512

1024

SPEED-UP STEP BY STEP

3.00X

2.50X

2.00X

(I10)

1.00X

0.50X

0.00X

Because of the
inherent load
imbalance, CPU
threads do really
poorly here.

2. Blocked

4. Asynchronous

1. Parallelized

3. Update Added

ASYNCHRONOUS TIPS

> Reuse streams, they’re expensive to create

> Pre-create them

> Consider async (block%2) to re-use just 2 streams
> Don’t forget to wait
> Test with 1 stream first

MULTI-GPU PROGRAMMING

MULTI-GPU OPENACC

acc_set device num(number, device type)

» Selects the device to use for all regions that follow

acc_get num devices (device type)

» Queries how many devices are available of a given type

> Most often, one will set a device number once per CPU thread

460 Y MULTI-GPU MANDELBROT

for (int gpu=0; gpu < 2 ; gpu ++)
{

acc_set device num(gpu,acc_device nvidia) ;

for (int block=0; block < numblocks; block++)
{

int ystart = block * blocksize;

int yend = ystart + blocksize;

acc_set device num(block%2,acc_device nvidia) ;

for (int y=ystart;y<yend;y++) {
for (int x=0;x<WIDTH;x++) {
image [y*WIDTH+x]=mandelbrot(x,y) ;

}
for (int gpu=0; gpu < 2 ; gpu ++)
{

acc_set device num(gpu,acc_device nvidia);

Allocate space on each device

Alternate devices per block

Clean up the devices

MULTI-GPU MANDELBROT PROFILE

L MVIDIA Visual Profiler
Run Help
MmO -

‘ “timeline.nvp

= [0] Te

—| Context1 |

=| Compute

+| Streams

=| [1] Tesla K40m

main_16.

OPENACC INTEROPERABILITY

OPENACC INTEROPERABILITY

<SANVIDIA. DEVELOPER ZONE “ah

OpenACC plays well with others. S E—

» Add CUDA or accelerated libraries to an j
OpenACC application -I! 3

Explore the world's biggest "
GPU developer conference.

> Add OpenACC to an existing accelerated
application

> Share data between OpenACC and CUDA

OPENACC & CUDA STREAMS

OpenACC suggests two functions for interoperating with CUDA streams:
» void* acc_get cuda stream(int async);

» int acc set cuda stream(int async, void* stream);

OPENACC HOST_DATA DIRECTIVE

Exposes the device address of particular objects to the host code.

#pragma acc data copy(x,Vy)

{

// x and y are host pointers

#ipragma acc host data use device(x,y) 7
{ _ XandY are device
// x and y are device pointers pointers here

} =

// x and y are host pointers

}

OpenACC Main

program main
integer, parameter ::
real, dimension(N) ::
real

1$acc data
| Initialize X and Y

1$acc

call saxpy(n, a, x, y)
1$acc end

1$acc end data

end program

 It's possible to interoperate from C/C++ .
or Fortran.
« OpenACC manages the data and .

passes device pointers to CUDA.

HOST_DATA EXAMPLE

CUDA C Kernel & Wrapper

void saxpy_kernel(int n, float a,
float *x, float *y)
{

int 1 = X*

}

void saxpy(int n, float a, float *dx, float *dy)

{
// Launch CUDA Kernel

saxpy_kerneT (N, 2.0, dx, dy);
}

CUDA kernel launch wrapped in function
expecting device arrays.

Kernel is launch with arrays passed from
OpenACC in main.

OpenACC can interface with existing
GPU-optimized libraries (from C/C++ or
Fortran).

This includes...
« CUBLAS

» Libsci_acc

« CUFFT

« MAGMA

« CULA
 Thrust

CUBLAS LIBRARY & OPENACC

OpenACC Main Calling CUBLAS

int N = 1<<20;
float *x, *y
// Allocate & Initialize X & Y

#pragma acc data copyin(x[0:N]) copy(y[0:N])

{

// Perform SAXPY on 1M elements

OPENACC DEVICEPTR

The deviceptr clause informs the compiler that an object is already on the

device, so no translation is necessary.

» Valid for parallel, kernels, and data

cudaMallocManaged((void*)&x, (size_t)n*sizeof(float));
cudaMallocManaged((void*)&y, (size_t)n*sizeof(float));

deviceptr (x,y)
for(int i=0; i<n ; i++)
{
y(i) = a*x(i)+y (1)

-~

Do not translate x
and y, they are
already on the

device.

DEVICEPTR EXAMPLE

OpenACC Kernels CUDA C Main

void saxpy(int n, float a, float * restrict
x, float * restrict y)

{

int main(int argc, char **argv)
{ float *x, *y, tmp;
int n = 1<<20, 1;
{ for(int i=0; i<n; i++)
{ y[i]l += 2.0*x[i];

saxpy(n, 2.0, X, y);

return O;

}

By passing a device pointer to an
OpenACC region, it's possible to add Memory is managed via standard CUDA calls.
OpenACC to an existing CUDA code.

OPENACC & THRUST

Thrust (thrust.github.io) is a STL-like
library for C++ on accelerators.

* High-level interface

« Host/Device container classes

« Common parallel algorithms

It's possible to cast Thrust vectors to

device pointers for use with OpenACC

void saxpy(int n, float a, float * restrict
x, float * restrict y)

{

#pragma acc kernels
{
for(int i=0; i<n; i++)
{
y[i] += 2.0*x[1];

int N = 1<<20;

for (int i=0; i<N; i++)
{
x[1i]
ylil
}

// Copy to Device

saxpy(N,2.0,

// Copy back to host

CUDA DEVICE ROUTINES AND OPENACC

extern “C” void
fidev(float* a, float* b, int i){

extern “C” void f1dev(float*,
float* int);

a[i] = b[i] ;
}

#pragma acc parallel loop \

present(a[0:n], b[0:n])
for(inti=0;1<n; ++i)

Even CUDA device functions t

can be called from OpenACC if 3
declared with ace routine.

fidev(a, b, i);

OPENACC ACC_MAP_DATA FUNCTION

The acc map data (acc unmap data) maps (unmaps) an existing device
allocation to an OpenACC variable.

cudamalloc((void*)&x_d, (size_t)n*sizeof (float)); Allocate device
acc_map_data(x, x_d, n*sizeof(float)); ,_ arrays with CUDA
cudaMalloc((void*)&y_d, (size_t)n*sizeof(float)); and map to
acc_map_data(y, y_d, n*sizeof(float)); OpenACC

AN

#pragma acc parallel loop Here x and y will

~ reuse the memory
of x_dandy_d

for (int i=0; i<n ; i++)
{
y(i) = a*x(i)+y (1)

ATOMIC DIRECTIVE

OPENACC ATOMIC DIRECTIVE

atomic: subsequent block of code is performed atomically with respect to
other threads on the accelerator

Clauses: read, write, update, capture

#pragma acc parallel loop
for (int i=0; i<N; i++) {

al[i%100]++;
}

OPENACC ATOMIC:

19
20
21
22
23
24
25
26
27
28
29
30
31

for (int it=0;it<ITERS;it++)

{

for(int i=0;i<HN;i++)

h[i]=0;

for(int i=0;i<N;i++) {
#pragma acc atomic

hl[a[i]]+=1;

HISTOGRAM

120

140

MISC. ADVICE AND TECHNIQUES

WRITE PARALLELIZABLE LOOPS

Use countable loops

- bool found=false; bool found=false;

C99: while->for while (! found && i<N)

Fortran: while->do if(a[i]==val) { if(a[i]==val) {
found=true found=true
loc=i; loc=i;

Avoid pointer }
arithmetic (use i++;

array syntax)

for (int i=0;i<N;i++) ({ for (int i=0;i<N;i++) {

Write rectangular for (int j=i;3j<N;j++) {
loops (compiler sum+=A[i] [J];

cannot parallelize } sum+=A[i] [J];
triangular loops) }

;J<N;J++) |

C99: RESTRICT KEYWORD

» Declaration of intent given by the programmer to the compiler
Applied to a pointer, e.g.
float *restrict ptr

Meaning: “for the lifetime of ptr, only it or a value directly derived
from it (such as ptr + 1) will be used to access the object to which it
points”*

» Parallelizing compilers often require restrict to determine independence
> Otherwise the compiler can’t parallelize loops that access ptr
> Note: if programmer violates the declaration, behavior is undefined

A\

http://en.wikipedia.org/wiki/Restrict

http://en.wikipedia.org/wiki/Restrict

INLINING

> When possible aggressively inline functions/routines
» This is especially important for inner loop calculations

> Inlined routines frequently perform better than acc routines because
the compiler has more information.

int IDX(int row, int col, int LDA) {

return row*LDA+col;

}

KERNEL FUSION

» Kernel calls are expensive
» Each call can take over 10us in order to launch

» It is often a good idea to combine loops of same trip counts containing very few lines of
code

> Kernel Fusion (i.e. Loop fusion)

» Join nearby kernels into a single kernel

for (int i for (int 1i = 0; 1 < n; ++i) {
af[i]=0; a[i]=0;
b[i]=0;

for (int i = 0; i < n; ++i) {
b[i]=0;

LOOP FISSION

> Loops that are exceptionally long may result in kernels that are resource-
bound, resulting in low GPU occupancy.

> This is particularly true for outer parallel loops containing nested loops
» Caution: This may introduce temporaries.

for (int J =0; J < m; ++3) { for (int j
for (int 1 = 0; 1 < n; ++i) { for (int i =
a[i]=0; a[i]=0;
} }

for (int i 0; i < n; ++i) {
b[i]=0; for (int j
} for (int i =
b[i]=0;
}

MEMORY COALESCING

» Coalesced access:
> A group of 32 contiguous threads (“warp”) accessing adjacent words
> Few transactions and high utilization
» Uncoalesced access:
» A warp of 32 threads accessing scattered words
» Many transactions and low utilization

» For best performance the vector loop should access memory contiguously
(stride-1)

Coalesced Uncoalesced

COMPLEX DATA LAYOUTS

> OpenACC works best with flat arrays

> Some compilers handle complex types (structs, classes, derived types)
better than others

> Doesn’t always work, particularly if members are dynamically allocated
> Work around: Use local pointers to struct members (C99 & Fortran)

May work Generally Works

int N=a.N;
float *data=a.data;

for (i=0;i<a.N;i++)
a.data[i]=0; for (1=0;i<N;i++)
data[i]=0;

NEXT STEPS

NEXT STEPS

» Attend more OpenACC sessions at GTC (or go back and watch videos).

S$5340 OpenACC and C++: An Application Perspective Fri 10:30 210C
S5198 Panel on GPU Computing with OpenACC and OpenMP Fri 11:00 210C

> Try an OpenACC self-paced lab.

> Get a free trial of the PGl Compiler (www.pgroup.com)

: JOIN THE CONVERSATION
> Please remember to fill out your surveys. HGTC15 W f I

http://www.pgroup.com/

