Extending Python for High-Performance Data-Parallel Programming

Siu Kwan Lam
March 24, 2014
Python for Data Analytics

Why Python?

● High-level scripting language
 ○ Dynamic-typed, Garbage Collected
● Rapid development
● Rich libraries
 ○ Array: NumPy, Blaze
 ○ Science: SciPy, Scikit-Learn
 ○ Visualization: Matplotlib, Boken
● Great glue language
But...

- Hard to parallelize
 - Global Interpreter Lock
- Slow execution
Our Solution: Numba

- Open-source JIT compiler for CPython
- Numerical loop to fast native code
- Work seamlessly with NumPy arrays
Numba Compilation Pipeline

1. Python Bytecode
2. High-Level Analysis & Transformation
3. Local Type Inference
4. LLVM
5. Native Code
Numba Compilation Pipeline

Python Bytecode

High-Level Analysis & Transformation

Local Type Inference

LLVM

Native Code

Can generate code that does not use the Python Runtime. Thus, eliminating the GIL.
from numba import jit
from numpy import arange

@jit
def sum2d(arr):
 M, N = arr.shape
 result = 0.0
 for i in range(M):
 for j in range(N):
 result += arr[i,j]
 return result

a = arange(9).reshape(3,3)
print(sum2d(a))

Specialize parameter type for var `a`
NumbaPro

- Enables parallel programming in Python
- Support various entry points:
 - Low-level CUDA Python
 - Just released an open-source version to Numba
 - High-level array oriented interface
 - CUDA library bindings
- Also support multicore CPU
 - And more hardware architectures in the future.
from numbapro import cuda, float32, void

@cuda.jit(void(float32[::,::], float32[::,::], float32[::,::]))
def square_matrix_mult(A, B, C):
 tx = cuda.threadIdx.x
 ty = cuda.threadIdx.y
 bx = cuda.blockIdx.x
 by = cuda.blockIdx.y
 bw = cuda blockDim.x
 bh = cuda blockDim.y

 x = tx + bx * bw
 y = ty + by * bh
 n = C.shape[0]

 if x >= n or y >= n:
 return

 cs = 0
 for i in range(n):
 cs += A[y, i] * B[i, x]
 C[y, x] = cs
from numbapro import cuda, float32, void

@cuda.jit(void(float32[:, :], float32[:, :], float32[:, :]))
def square_matrix_mult(A, B, C):
 tx = cuda.threadIdx.x
 ty = cuda.threadIdx.y
 bx = cuda.blockIdx.x
 by = cuda.blockIdx.y
 bw = cuda.blockDim.x
 bh = cuda.blockDim.y

 x = tx + bx * bw
 y = ty + by * bh
 n = C.shape[0]

 if x >= n or y >= n:
 return

 cs = 0
 for i in range(n):
 cs += A[y, i] * B[i, x]
 C[y, x] = cs
from numbapro import cuda, float32, void

@cuda.jit(void(float32[:, :], float32[:, :], float32[:, :]))
def square_matrix_mult(A, B, C):
 tx = cuda.threadIdx.x
 ty = cuda.threadIdx.y
 bx = cuda.blockIdx.x
 by = cuda.blockIdx.y
 bw = cuda.blockDim.x
 bh = cuda.blockDim.y

 x = tx + bx * bw
 y = ty + by * bh
 n = C.shape[0]

 if x >= n or y >= n:
 return

 cs = 0
 for i in range(n):
 cs += A[y, i] * B[i, x]
 C[y, x] = cs

Map threads to matrix coordinate
NumbaPro “CUDA Python”

```python
from numbapro import cuda, float32, void

@cuda.jit(void(float32[:, :], float32[:, :], float32[:, :]))
def square_matrix_mult(A, B, C):
    tx = cuda.threadIdx.x
    ty = cuda.threadIdx.y
    bx = cuda.blockIdx.x
    by = cuda.blockIdx.y
    bw = cuda.blockDim.x
    bh = cuda.blockDim.y
    
    x = tx + bx * bw
    y = ty + by * bh
    n = C.shape[0]

    if x >= n or y >= n:
        return

    cs = 0
    for i in range(n):
        cs += A[y, i] * B[i, x]
    C[y, x] = cs
```

Thread inside matrix?
from numbapro import cuda, float32, void

@cuda.jit(void(float32[::,::], float32[::,::], float32[::,::]))
def square_matrix_mult(A, B, C):
 tx = cuda.threadIdx.x
 ty = cuda.threadIdx.y
 bx = cuda.blockIdx.x
 by = cuda.blockIdx.y
 bw = cuda.blockDim.x
 bh = cuda.blockDim.y

 x = tx + bx * bw
 y = ty + by * bh
 n = C.shape[0]

 if x >= n or y >= n:
 return

 cs = 0
 for i in range(n):
 cs += A[y, i] * B[i, x]
 C[y, x] = cs
High-Level APIs

```python
@vectorize(['complex64(complex64, complex64)'], target='gpu')
def vmult(a, b):
    """Element complex64 multiplication""
    return a * b

def task1(cufft, d_image_complex, d_response_complex):
cufft.fft_inplace(d_image_complex)
cufft.fft_inplace(d_response_complex)

vmult(d_image_complex, d_response_complex, out=d_image_complex)
cufft.ifft_inplace(d_image_complex)

# At this point, we have applied the filter onto d_image_complex
return  # Does not return anything
```
High-Level APIs

```python
@vectorize(['complex64(complex64, complex64)'], target='gpu')
def vmult(a, b):
    """Element complex64 multiplication""
    return a * b

def task1(cufft, d):
cufft.fft_inplace(d)
cufft.fft_inplace(d)
vmult(d_image_complex, d_response_complex, out=d_image_complex)
cufft.ifft_inplace(d_image_complex)

# At this point, we have applied the filter onto d_image_complex
return  # Does not return anything
```

@vectorize turns a scalar function to an elementwise array functions
High-Level APIs

```
@vectorize(['complex64(complex64, complex64)'], target='gpu')
def vmult(a, b):
    """Element complex64 multiplication""
    return a * b

def task1(cufft, d_image_complex):
cufft.fft_inplace(d_image_complex)
cufft.fft_inplace(d_response_complex)

vmult(d_image_complex, d_response_complex, out=d_image_complex)
cufft.ifft_inplace(d_image_complex)

# At this point, we have applied the filter onto d_image_complex
return  # Does not return anything
```

Support multiple targets: cpu, parallel, gpu
High-Level APIs

```python
@vectorize(['complex64(complex64, complex64)',], target='gpu')
def vmult(a, b):
    """Element complex64 multiply""
    return a * b

def task1(cufft, d_image_complex, d_response_complex):
cufft.fft_inplace(d_image_complex)
cufft.fft_inplace(d_response_complex)

vmult(d_image_complex, d_response_complex, out=d_image_complex)

cufft.ifft_inplace(d_image_complex)

# At this point, we have applied the filter on the complex array.
return  # Does not return anything
```

CUDA library support
This uses cuFFT

Also, supporting:
cuBlas,
cuRand,
cuSparse
We can do better!

- Still need CUDA specific knowledge
- Needs higher-level abstraction
DARPA GPU Project (STTR-D13B-004)

- Started about a month ago
- Develop high-level easy to use programming language for GPUs
- Partner with Dr. Alex Dimakis at UT Austin
Project Goals

- Provide new language features as an extension to NumbaPro
- Portable parallel algorithms
- Especially for sparse problems:
 - graphs, sparse matrices
What we did...

- Try to implement a Sparse PCA in NumbaPro
- Identify
 - common patterns
 - shortcomings
 - missing features
Sparse PCA (CPU)

```python
def spca_unopt(Vd, epsilon=0.1, d=3, k=10):
    p = Vd.shape[0]
    numSamples = (4. / epsilon) ** d

    opt_x = np.zeros((p, 1))
    opt_v = -np.inf

    C = np.random.randn(d, numSamples)

    for i in np.arange(1, numSamples + 1):
        c = C[::, i - 1:i]
        c = c / np.linalg.norm(c)
        a = Vd.dot(c)

        I = np.argsort(a, axis=0)
        val = np.linalg.norm(a[I[-k:]])

        if val > opt_v:
            opt_v = val
            opt_x = np.zeros((p, 1))
            opt_x[I[-k:]] = a[I[-k:], :] / val

    return opt_x
```
Sparse PCA (CPU)

```python
def spca_unopt(Vd, epsilon=0.1, d=3, k=10):
    p = Vd.shape[0]
    numSamples = (4. / epsilon) ** d

    opt_x = np.zeros((p, 1))
    opt_v = -np.inf

    C = np.random.randn(d, numSamples)

    for i in np.arange(1, numSamples + 1):
        c = C[:, i - 1:i]
        c = c / np.linalg.norm(c)
        a = Vd.dot(c)

        I = np.argsort(a, axis=0)
        val = np.linalg.norm(a[I[-k:]])

        if val > opt_v:
            opt_v = val
            opt_x = np.zeros((p, 1))
            opt_x[I[-k:]] = a[I[-k:], :] / val

    return opt_x
```

Embarrassingly Parallel
Sparse PCA (GPU)

```python
def spca(Vd, epsilon=0.1, d=3, k=10):
    p = Vd.shape[0]
    initNumSamples = int((4. / epsilon) ** d)
    maxSize = 32000
    opt_x = np.zeros((p, 1))
    opt_v = -np.inf

    dVd = cuda.to_device(Vd)

    remaining = initNumSamples
    custr = cuda.stream()
    prng = curand.PRand(stream=custr)

    while remaining:
        numSamples = min(remaining, maxSize)
        remaining -= numSamples

        dA = cuda.device_array(shape=(Vd.shape[0], numSamples), order='F')
        dI = cuda.device_array(shape=(k, numSamples), dtype=np.int16, order='F')
        daInorm = cuda.device_array(shape=numSamples, dtype=np.float64)
        dC = cuda.device_array(shape=(d, numSamples), order='F')

        prng.normal(dC.reshape(dC.size), mean=0, sigma=1)
        norm_random_nums = [calc_inctaul(dC.shape[1], 512, 512, custr)(dC, d)]
        batch_matmul(numSamples, 512, custr)(dC, d, dA)
        batch_k_selection[numSamples, Vd.shape[0], custr](dA, dI, k)
        batch_scatter_norm[numSamples, Vd.shape[0], custr](dA, dI, daInorm)

        aInorm = daInorm.copy_to_host(stream=custr)
        custr.synchronize()

        for i in range(numSamples):
            val = aInorm[i]
            if val > opt_v:
                opt_v = val
                opt_x.fill(0)
                a = gpu_slice(dA, i).reshape(p, 1)
                Ik = gpu_slice(dI, i).reshape(k, 1)
                aIk = a[Ik]
                opt_x[Ik] = (aIk / val)

    del dA, dI, daInorm, dC
    return opt_x
```

- Longer code
- Complicated
- Not scalable
- Uses
 - cuRAND
 - Batch matrix mult
 - K-selection
 - Scatter
 - Slicing
 - Custom elementwise functions
Sparse PCA Benchmark (GTX 780Ti)
Realizations...

We need:

- Need more generic high-level array functions
 - map, reduce, zipwith
- Need builtin library functions
 - k-select, sort, scatter, random
Can Learn from...

- Nvidia Nova
- Halide
- Haskell Accelerate
- C++ Thrust
Can Learn from...

- Nvidia Nova
- Halide
- Haskell Accelerate
- C++ Thrust

They all have a functional/dataflow style
Potentially...

- Build dataflow graph at runtime
 - at runtime, the imperative control-flow is flattened
 - $map(f, map(g, array))$

- Optimize by fusion
 - Function fusion
 - $map(f, map(g, array)) = map(f \cdot g, array)$
 - Storage fusion
 - remove & reuse temporaries
Parallel Primitives

- map
- zipwith
- reduce
- scan
- scatter
- sort
- k-select
- random
- (enough?)
Parallel Primitives

- map
- zipwith
- reduce
- scan
- scatter
- sort
- k-select
- random
- *(enough?)*

And, library calls as extensions?
Manual Tuning?

- Leave room for manual tuning
 - Require expressing optimization and scheduling.
- Can we do compiler optimization in a reasonable time?
- Is tuning by expert still better?
- $f \cdot g = \text{fuse}(f, g)$
Thank You

NumbaPro is Part of Anaconda Accelerate.
Visit continuum.io
Backup Slides
@vectorize

def vec_saxpy(a, x, y):
 ### Task 1 ###
 # Complete
 # Hint: this is a scalar function of
 # float32(float32 a, float32 x, float32 y)

List of function type signatures
@vectorize

def vec_saxpy(a, x, y):
 ### Task 1 ###
 # Complete
 # Hint:
 #
 @vectorize([[float32(float32, float32, float32, float32)],
 target='gpu']
 return a * x + y

Code generation target: “cpu”, “parallel”, “gpu”
A scalar function

@vectorize

def vec_saxpy(a, x, y):
 ### Task 1 ###
 # Complete the vectorize version
 # Hint: this is a scalar function of
 # float32(float32 a, float32 x, float32 y)

Args: a, x, y are float32
Returns a float32
CUDA JIT Linking

- Use CUDA-C code inside NumbaPro
- Compile CUDA-C code into relocatable device code
- NumbaPro uses CUDA JIT Linker to combine its generated code with a precompiled library
Use of JIT Linking

- Connect to missing features
 - NumbaPro is still young
- Connect to CUDA-C only features
- Reusing existing CUDA-C code
NumbaPro Python code

\[
\begin{align*}
\text{bar} &= \text{cuda.declare_device('bar', 'int32(int32, int32)')} \\
\text{linkfile} &= "../data/jitlink.o"
\end{align*}
\]

\[
\begin{align*}
@\text{cuda.jit('void(int32[:], int32[:])', link=\text{[linkfile]})} \\
\text{def foo(inp, out):} \\
\quad i &= \text{cuda.grid(1)} \\
\quad \text{out}[i] &= \text{bar(inp}[i], 2)
\end{align*}
\]
NumbaPro Python code

```python
bar = cuda.declare_device('bar', 'int32(int32, int32)'
lkfile = "../data/jitlink.o"

@cuda.jit device(\n    def foo(inp, out):
        i = cuda.grid(1)
        out[i] = bar(inp[i], 2)
```

Declare external device function in Python
NumbaPro Python code

```python
bar = cuda.declare_device('bar', 'int32(int32, int32)')
linkfile = "../data/jitlink.o"

def cuda jit(kernel(int32[:], int32[:]), link=[linkfile])
    i = cuda.grid(1)
    out[i] = bar(inp[i], 2)
```

Precompiled object file
NumbaPro Python code

```
bar = cuda.declare_device('bar', 'int32(int32, int32)')
linkfile = "../data/jitlink.o"

@cuda.jit('void(int32[:], int32[:])', link=[linkfile])
def foo(inp, out):
    i = cuda.grid(1)
    out[i] = bar(inp[i], i)
```

Add library dependencies to the CUDA kernel
NumbaPro Python code

```python
bar = cuda.declare device('bar', 'int32(int32, int32)')
linkfile = ""

@cuda.jit('void(int32[:], int32[:])', link=[linkfile])
def foo(inp, out):
    i = cuda.grid(1)
    out[i] = bar(inp[i], 2)
```
CUDA-C code

extern "C" {

__device__
int bar(int* retval, int a, int b) {

 return 0;
}

}
CUDA-C code

```c
extern "C" {

__device__
int bar(int* retval, int a, int b) {

}  
```

NumbaPro expects return value to be passed as the first argument
CUDA-C code

extern "C" {

__device__
int bar(int* retval, int a, int b) {

 return

}

}

Actual arguments follows
CUDA-C code

extern "C" {

__device__
int bar(int* retval, int a, int b) {

 return 0;
}

}