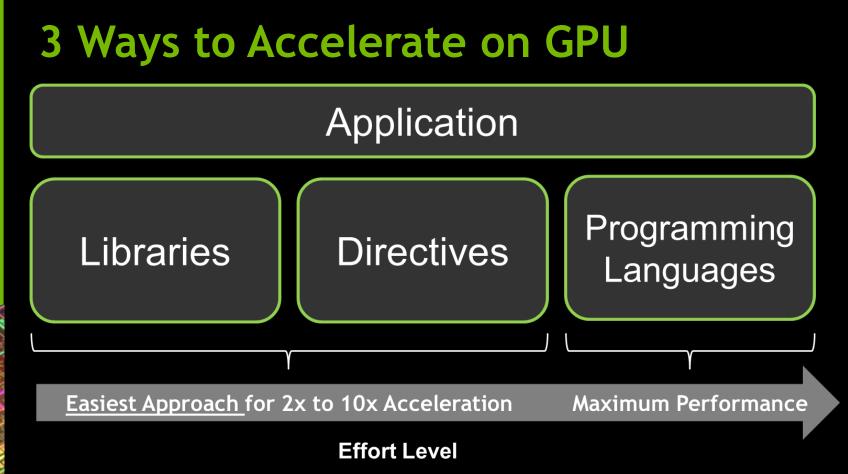
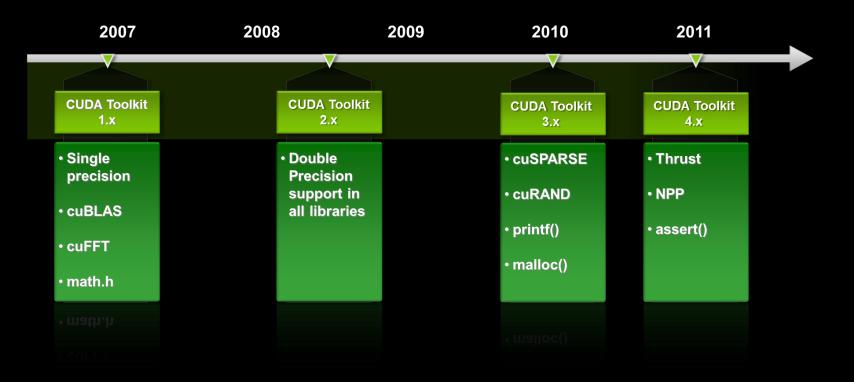


CUDA Libraries and Ecosystem Overview

Peter Messmer, NVIDIA



Constant progress on library development



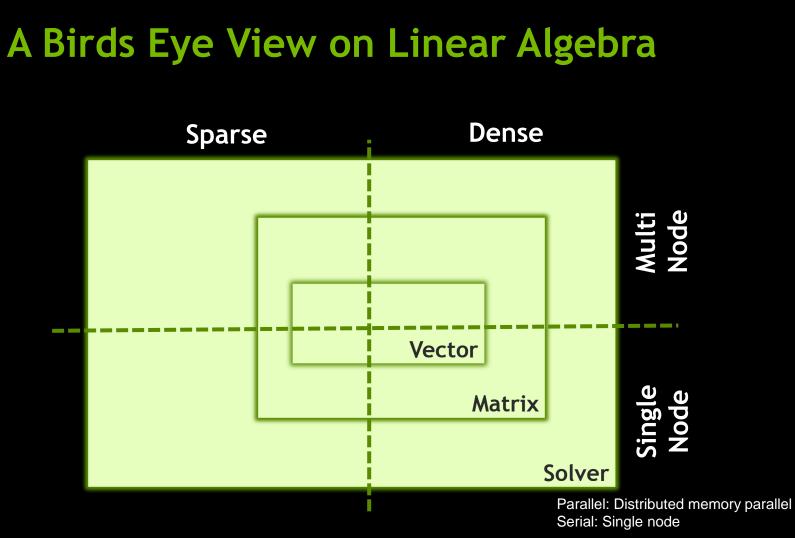
CUDA Math Libraries

High performance math routines for your applications:

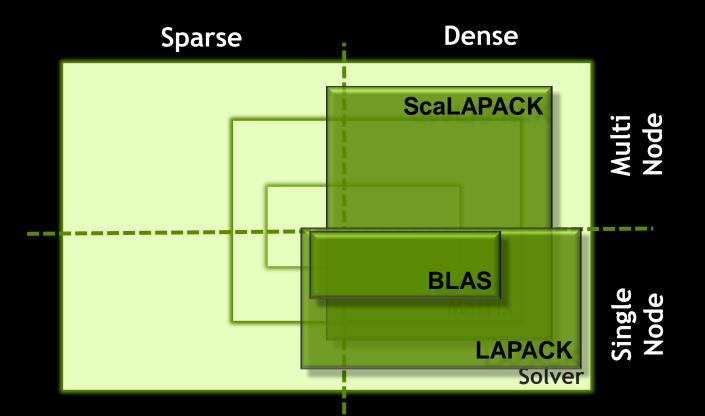
- cuFFT Fast Fourier Transforms Library
- cuBLAS Complete BLAS Library
- cuSPARSE Sparse Matrix Library
- cuRAND Random Number Generation (RNG) Library
- NPP Performance Primitives for Image & Video Processing
- Thrust Templated C++ Parallel Algorithms & Data Structures
- math.h C99 floating-point Library

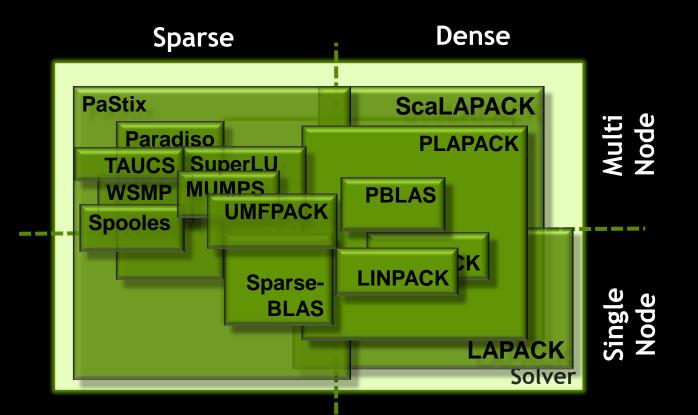
Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

Vector	
Matrix	
	Solver

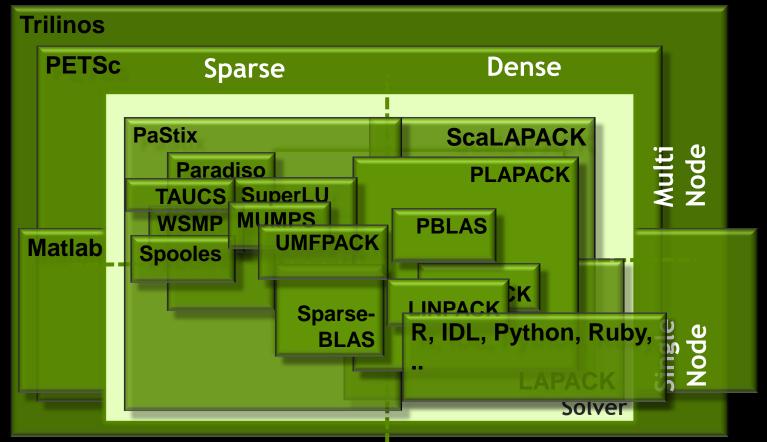


Sometimes it seems as if there's only three ...





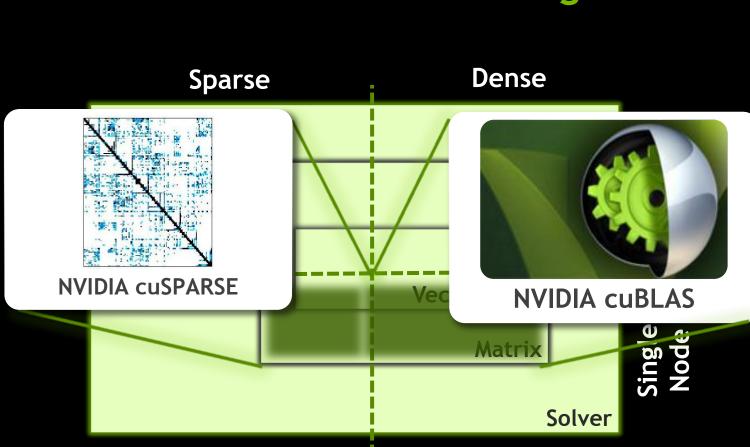
... and even more ...



NVIDIA CUDA Library Approach

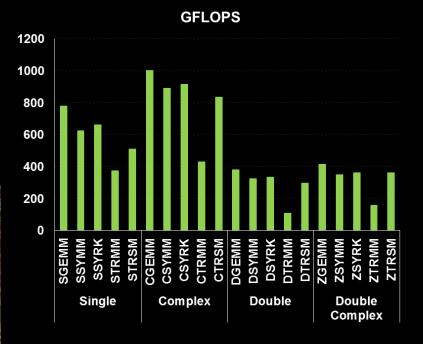
- Provide basic building blocks
- Make them easy to use
- Make them fast

- Provides a quick path to GPU acceleration
- Enables ISVs to focus on their "secret sauce"
- Ideal for applications that use CPU libraries

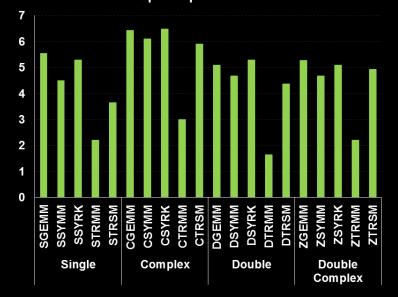


NVIDIA's Foundation for LinAlg on GPUs

cuBLAS Level 3 Performance Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL



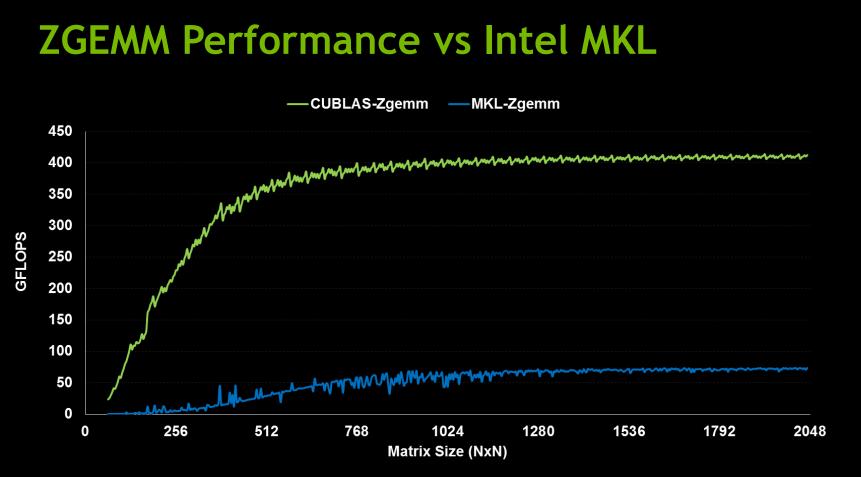
Speedup over MKL



4Kx4K matrix size

- cuBLAS 4.1, Tesla M2090 (Fermi), ECC on
- MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Performance may vary based on OS version and motherboard configuration



Performance may vary based on OS version and motherboard configuration

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

cuBLAS: Legacy and Version 2 Interface

- Legacy Interface
 - Convenient for quick port of legacy code

Version 2 Interface

NVIDIA cuBLAS

- Reduces data transfer for complex algorithms
 - Return values on CPU or GPU
 - Scalar arguments passed by reference
- Support for streams and multithreaded environment
- Batching of key routines

Version 2 Interface helps reducing memory transfers

Index transferred to CPU, CPU needs vector elements for scale factor

- Legacy Interface
 - idx = cublasIsamax(n, d_column, 1);
 - err = cublasSscal(n, 1./column[idx], row, 1);

Version 2 Interface helps reducing memory transfers

- Legacy Interface
 - idx = cublasIsamax(n, d_column, 1);
 - err = cublasSscal(n, 1./d_column[idx], row, 1);

Version 2 Interface

err = cublasIsamax(handle, n, d_column, 1, d_maxIdx);

kernel<<< >>> (d_column, d_maxIdx, d_val);

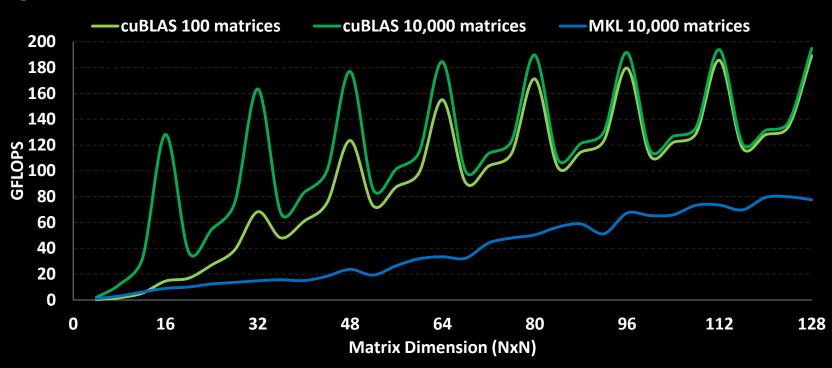
err = cublasSscal(handle, n, d_val, d_row, 1);

All data remains on the GPU

CPU, CPU needs vector elements for

scale factor

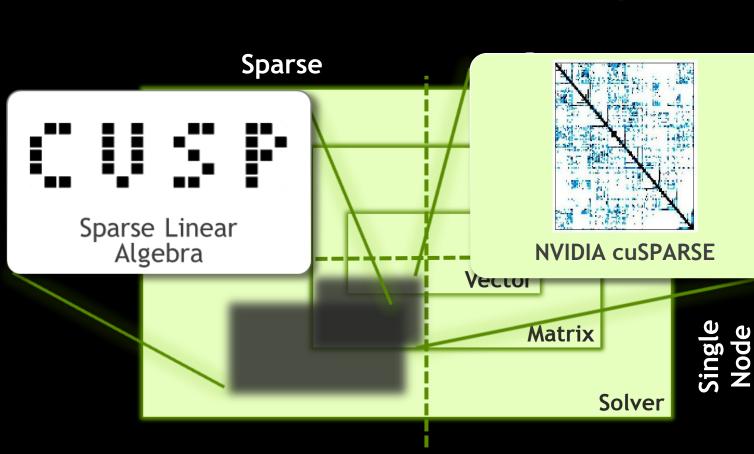
cuBLAS Batched GEMM API improves performance on batches of small matrices



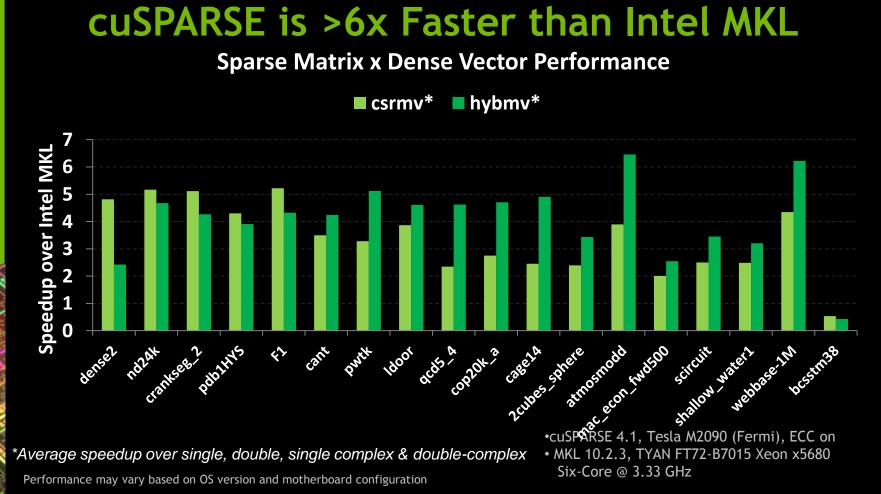
Performance may vary based on OS version and motherboard configuration

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz



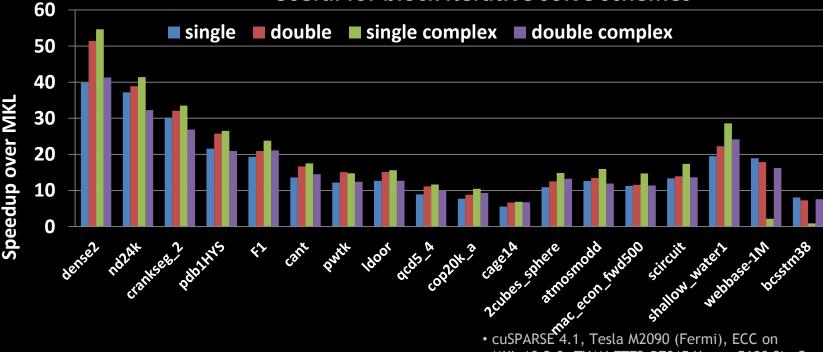
The cuSPARSE - CUSP Relationship



MKL

over

cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm) Useful for block iterative solve schemes



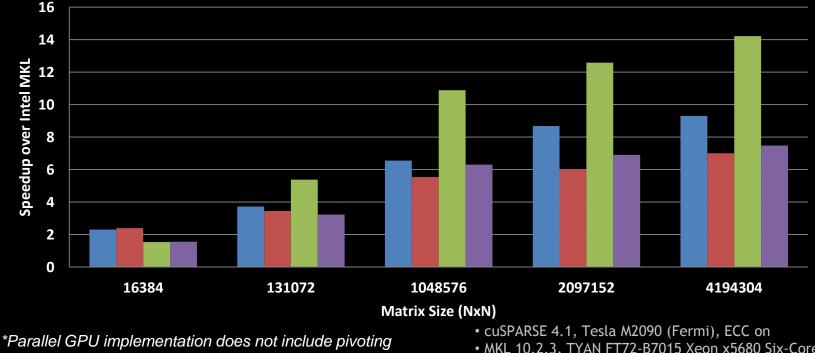
Performance may vary based on OS version and motherboard configuration

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Tri-diagonal solver performance vs. MKL

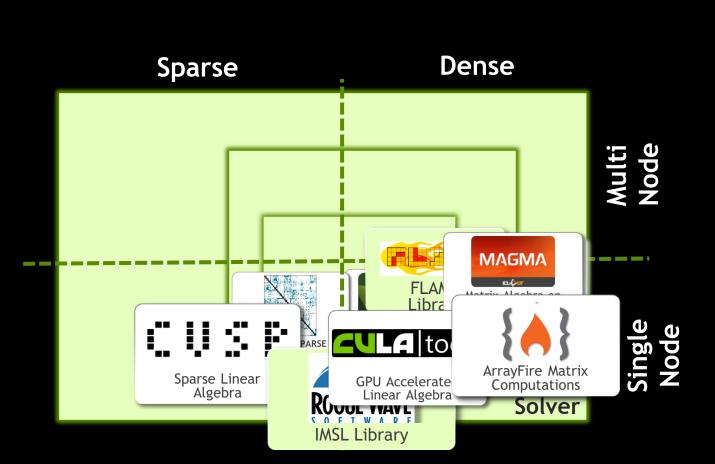
Speedup for Tri-Diagonal solver (gtsv)*

■ single ■ double ■ complex ■ double complex

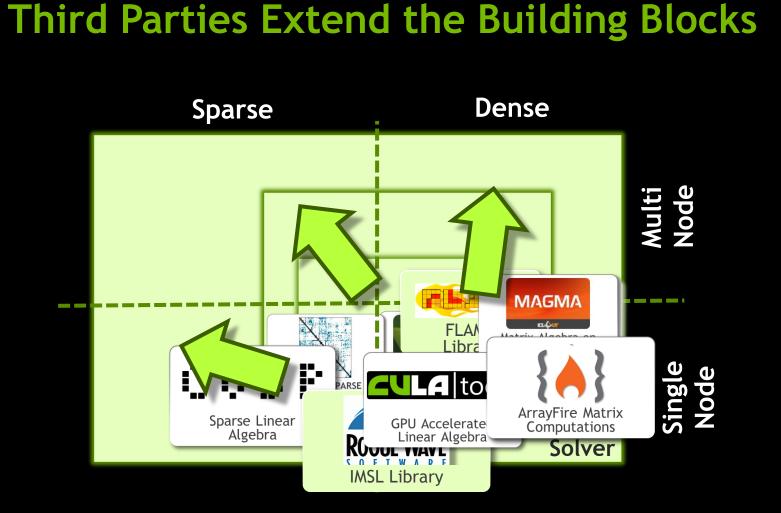


Performance may vary based on OS version and motherboard configuration

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz



Third Parties Extend the Building Blocks



Different Approaches to Linear Algebra

- CULA tools (dense, sparse)
 - LAPACK based API
 - Solvers, Factorizations, Least Squares, SVD, Eigensolvers
 - Sparse: Krylov solvers, Preconditioners, support for various formats

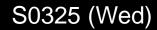
culaSgetrf(M, N, A, LDA, INFO)

GPU Accelerated Linear Algebra

S0307 (Wed)

- ArrayFire (LibJacket)
 - "Matlab-esque" interface
 - Array container object
 - Solvers, Factorizations, SVD, Eigensolvers

array out = lu(A)



Different Approaches to Linear Algebra (cont.)

- MAGMA
 - LAPACK conforming API
 - Magma BLAS and LAPACK
 - High performance by utilizing both GPU and CPU

magma_sgetrf(M, N, NRHS, A, LDA, INFO)

S0042 (Wed)

- LibFlame
 - LAPACK compatibility interface
 - Infrastructure for rapid linear algebra algorithm development

FLASH_LU_piv(A, p)

Toolkits are increasingly supporting GPUs

PETSc

- GPU support via extension to Vec and Mat classes
- Partially dependent on CUSP
- MPI parallel, GPU accelerated solvers

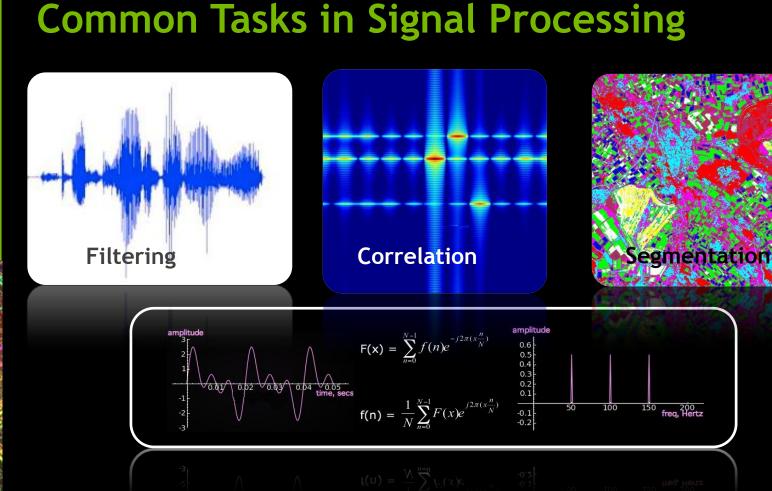
Trilinos

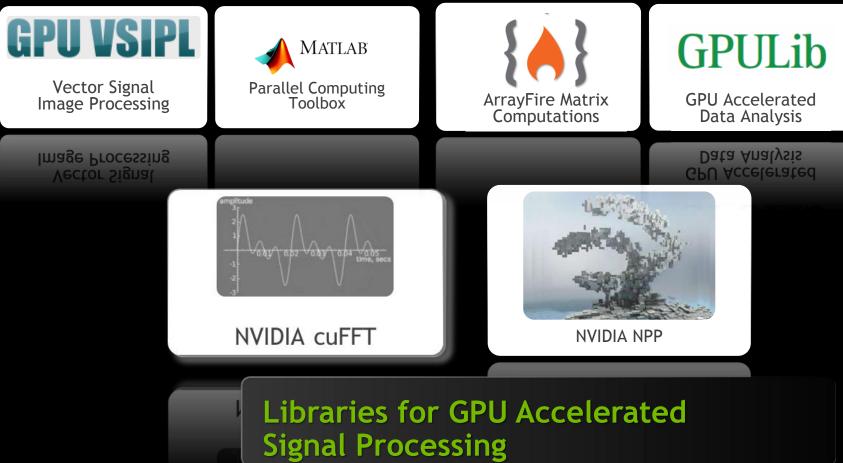
- GPU support in KOKKOS package
- Used through vector class Tpetra
- MPI parallel, GPU accelerated solvers

GPU TECHNOLOGY CONFERENCE

Signal Processing

T





Basic concepts of cuFFT

- Interface modeled after FFTW
 - Simple migration from CPU to GPU

fftw_plan_dft2_2d => cufftPlan2d

- "Plan" describes data layout, transformation strategy
 - Depends on dimensionality, layout, type of transform
 - Independent of actual data, direction of transform
 - Reusable for multiple transforms

Execution of plan

- Depends on transform direction, data

cufftExecC2C(plan, d_data, d_data, CUFFT_FORWARD)

Efficient use of cuFFT

- Perform multiple transforms with the same plan
 - Use e.g. in forward/inverse transform for convolution, transform at each simulation timestep, etc.

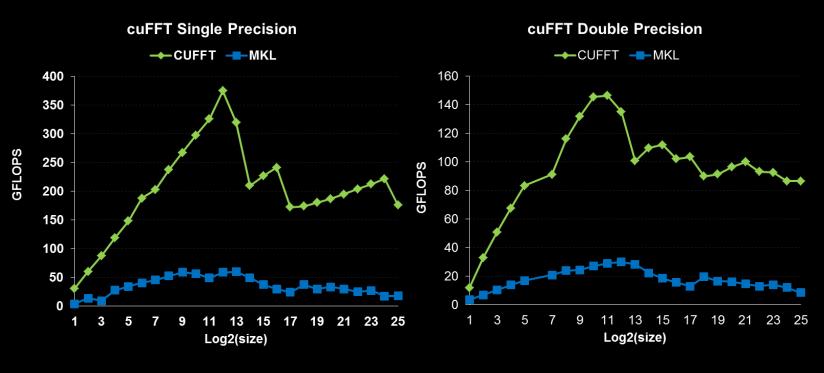
Transform in streams

- cufft functions do not take a stream argument
- Associate a plan with a stream via
 cufftSetStream(plan, stream)

Batch transforms

- Concurrent execution of multiple identical transforms
- Support for 1D, 2D and 3D transforms

High 1D transform performance is key to efficient 2D and 3D transforms



Performance may vary based on OS version and motherboard configuration

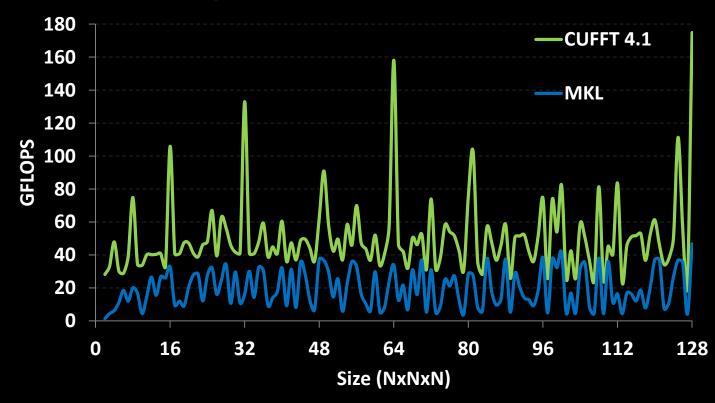
• Measured on sizes that are exactly powers-of-2

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

Optimized 3D transforms

Single Precision All Sizes 2x2x2 to 128x128x128



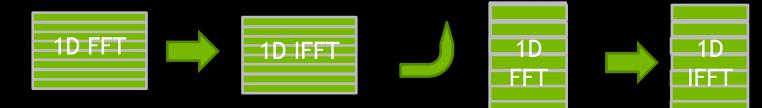
Performance may vary based on OS version and motherboard configuration

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz

cufftPlanMany: Transformation on complex data layouts

Example: Range-Doppler compression



- No need for explicit transpose with cufftPlanMany
 - Independent input and output strides/internal dimension cufftPlanMany(cufftHandle *plan, int rank, int *n, int *inembed, int istride, int idist, // input layout int *onembed, int ostride, int odist, // output layout cufftType type, int batch)

Basic concepts of NPP

- Collection of high-performance GPU processing
 - Initial focus on Image, Video and Signal processing
 - Growth into other domains expected
 - Support for multi-channel integer and float data

CAPI => name disambiguates between data types, flavor nppiAdd_32f_C1R (...)

 "Add" two single channel ("C1") 32-bit float ("32f") images, possibly masked by a region of interest ("R")

NPP features a large set of functions

- Arithmetic and Logical Operations
 - Add, mul, clamp, ..
- Threshold and Compare
- Geometric transformations
 - Rotate, Warp, Perspective transformations
 - Various interpolations
- Compression
 - jpeg de/compression
- Image processing
 - Filter, histogram, statistics

NVIDIA NPP

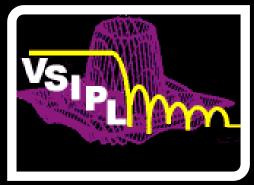
S0404 (Tue)

GPU-VSIPL - Vector Image Signal Processing Library

- Open Industry Standard for Signal Processing
- Focus on embedded space, but support for GPU, CPU, ...
- Separate memory spaces integral part of API
- Support for single precision float, fft, matrix factorization
- GPU enabled version from Georgia Tech
 - Lite and Core API

vsip_ccfftmip_f(d->fft_plan_fast,d->z_cmview);

 VSIPL++ by Mentor Graphics S0620 (Tue)



Multi-GPU FFT

- Many problems too large for single GPU
- Careful about data layout
 - perform 1D transforms on a single GPU if possible

Minimize data transfer cost (GPU direct)

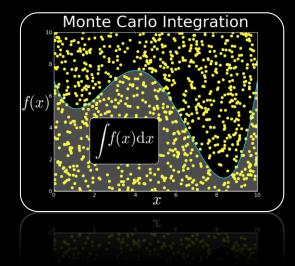
- Multi-Dimensional distributed memory FFT requires all-to-all
- Various presentations here at GTC:
 - Akira Nukada, Tokyo Institute of Technology, S0290 (Wed)
 - Filippo Spiga, ICHEC, S0220 (Thu)

cuRAND

75

Random Number Generation on GPU

- Generating high quality random numbers in parallel is hard
 - Don't do it yourself, use a library!
- Large suite of generators and distributions
 - XORWOW, MRG323ka, MTGP32, (scrambled) Sobol
 - uniform, normal, log-normal
 - Single and double precision



Two APIs for cuRAND

- $-\,$ Host: Ideal when generating large batches of RNGs on GPU
- Device: Ideal when RNGs need to be generated inside a kernel

cuRAND: Host vs Device API

- Host API
 - #include "curand.h"

Generate set of random numbers at once

curandCreateGenarator(&gen, CURAND_RNG_PSEUDO_DEFAULT);
curandGenerateUniform(gen, d_data, n);

Device API

```
#include "curand_kernel.h"
```

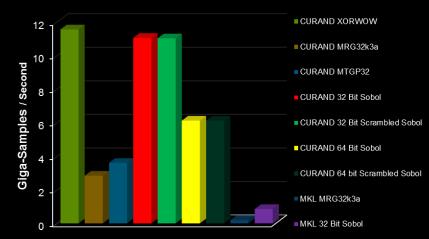
_global___ void generate_kernel(curandState *state) {

int id = threadIdx.x + blockIdx.x * 64

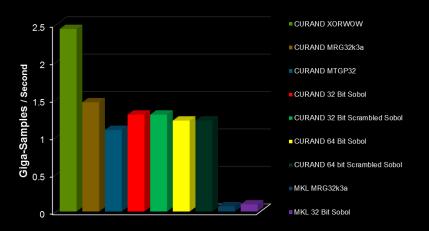
x = curand(&state[id]);

Generate random numbers per thread

Double Precision Uniform Distribution



Double Precision Normal Distribution



Performance may vary based on OS version and motherboard configuration

•cuRAND 4.1, Tesla M2090 (Fermi), ECC on • MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 @ 3.33 GHz

Thurst: STL-like CUDA Template Library

Device and host vector class

thrust::host_vector<float> H(10, 1.f);

thrust::device_vector<float> D = H;

C++ STL Features for CUDA

Iterators

```
thrust::fill(D.begin(), D.begin()+0, 42.f);
```

```
float* raw_ptr = thrust::raw_pointer_cast(D);
```

Algorithms

Sort, reduce, transformation, scan, ..
thrust::transform(D1.begin(), D1.begin(), D2.begin(), D2.end(),
thrust::plus<float>()); // D2 = D1 + D2

S0602 (Tue), S0653 (Thu)

Using Libraries with OpenACC

- Libraries often require explicit device data
- Device data transparent in OpenACC
- Inform OpenAcc about device variables with data deviceptr clause

```
cufftExecPlan(plan, d_signal,d _signal)
...
#pragma acc data deviceptr(d_signal)
#pragma acc loop independent
for(i=0; i<n; i++) d_signal[i] = 2 * d_signal[i];</pre>
```

Explore the CUDA (Libraries) Ecosystem

CUDA Tools and Ecosystem described in detail on NVIDIA Developer Zone:

<u>developer.nvidia.com/cuda-</u> <u>tools-ecosystem</u>

Attend GTC library talks

Summary

- CUDA libraries offer a broad range of high-performance functions
- 3rd party libraries provide extended functionality
- By sticking to commonly used interfaces, legacy code can be moved quickly to GPUs ("drop-in")
- Libraries enable developers to focus on their core IP
- Libraries interact well with other parts of the CUDA ecosystem

