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CUDA: COMMON UNIFIED DEVICE
ARCHITECTURE

® Parallel computing architecture
and programming model

GPU Computing Application

® Includes a CUDA C compiler, ¢ ][ Crt ][Fortra”] Java ] C# [ e
support for OpenCL and - - .
DlrectCompute CUDAC ] [ OpenC L]§ DirectCompute] [ CUDA Fortran

NVIDIA GPU with the CUDA parallel computing 1

® Architected to natively support L architecture
multiple computational interfaces
(standard languages and APIs)
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Computing Model
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PROCESSING FLOW
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1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

—
I



CUDA Kernels <
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Parallel portion of application: execute as a kernel
* Entire GPU executes kernel, many threads

.

CUDA threads:
* Lightweight
® Fast switching
# 1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels
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CUDA Kernels: Parallel Threads

* A kernel is an array of threads,

executed in parallel

* All threads execute the same

code

® Each thread has an ID

# Select input/output data
® Control decisions
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float x = input[threadID];

\.

float y = func(x);
output[threadID] =;




Key Idea of CUDA <3
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* Write a single-threaded program parameterized in terms of the
thread ID.

* Use the thread ID to select a subset of the data for processing,
and to make control flow decisions.

®* Launch a number of threads, such that the ensemble of threads
processes the whole data set.
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CUDA Kernels: Subdivide into Blocks <3
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CUDA Kernels: Subdivide into Blocks <3
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CUDA Kernels: Subdivide into Blocks <3
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® Threads are grouped into blocks
* Blocks are grouped into a grid
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