
Carlo Nardone

Sr. Solution Architect, NVIDIA EMEA

CUDA PROGRAMMING MODEL

2

CUDA: COMMON UNIFIED DEVICE
ARCHITECTURE

Parallel computing architecture
and programming model

Includes a CUDA C compiler,
support for OpenCL and
DirectCompute

Architected to natively support
multiple computational interfaces
(standard languages and APIs)

 NVIDIA GPU with the CUDA parallel computing
architecture

CUDA C OpenCL™ DirectCompute CUDA Fortran

GPU Computing Application

C C++ Fortran Java C# …

3

NVIDIA CUDA EVOLUTION

4

Computing Model

5

PROCESSING FLOW

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus

© NVIDIA Corporation 2009

CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

© NVIDIA Corporation 2009

CUDA Kernels: Parallel Threads

A kernel is an array of threads,

executed in parallel

All threads execute the same

code

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadID];

float y = func(x);

output[threadID] = y;

© NVIDIA Corporation 2009

Key Idea of CUDA

Write a single-threaded program parameterized in terms of the

thread ID.

Use the thread ID to select a subset of the data for processing,

and to make control flow decisions.

Launch a number of threads, such that the ensemble of threads

processes the whole data set.

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

A kernel is executed as a grid of blocks of threads

© NVIDIA Corporation 2009

Communication Within a Block

Threads may need to cooperate

Memory accesses

Share results

Cooperate using shared memory

Accessible by all threads within a block

Restriction to “within a block” permits scalability

Fast communication between N threads is not feasible when N large

© NVIDIA Corporation 2009

Transparent Scalability – G84

1 2 3 4 5 6 7 8 9 10 11 12

1 2

3 4

5 6

7 8

9 10

11 12

© NVIDIA Corporation 2009

Transparent Scalability – G80

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8

9 10 11 12

© NVIDIA Corporation 2009

Transparent Scalability – GT200

1 2 3 4 5 6 7 8 9 10 11 12

1 2 3 4 5 6 7 8 9 10 11 12
...

Idle Idle Idle

© NVIDIA Corporation 2009

Numbering of Threads

0 1 2 3 4 5 6 7 …

1-dimensional indexing

© NVIDIA Corporation 2009

Numbering of Threads

0,0 0,1 0,2 0,3 0,4 0,5 0,6 0,7 …

2-dimensional indexing

1,0 1,1 1,2 1,3 1,4 1,5 1,6 1,7 …

2,0 2,1 2,2 2,3 2,4 2,5 2,6 2,7 …

© NVIDIA Corporation 2009

Numbering of Threads

Or 3-dimensional indexing

0,0,0 0,0,1 0,0,2 0,0,3 0,0,4 0,0,5 0,0,6 0,0,7 …

0,1,0 0,1,1 0,1,2 0,1,3 0,1,4 0,1,5 0,1,6 0,1,7 …

1,0,0 1,0,1 1,0,2 1,0,3 1,0,4 1,0,5 1,0,6 1,0,7 …

1,1,0 1,1,1 1,1,2 1,1,3 1,1,4 1,1,5 1,1,6 1,1,7 …

…

© NVIDIA Corporation 2009

Numbering of Blocks

0 1 2 3

4 5 6 7

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

1D

2D

© NVIDIA Corporation 2009

CUDA Programming Model - Summary

A kernel executes as a grid of

thread blocks

A block is a batch of threads

Communicate through shared

memory

Each block has a block ID

Each thread has a thread ID

Host

Kernel 1

Kernel 2

Device

0 1 2 3

4 5 6 7

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

1D

2D

© NVIDIA Corporation 2009

Single-Instruction, Multiple-Thread Execution

SMC

Geometry Controller

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SM

TPC

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Warp: set of 32 parallel threads that execute together in

single-instruction, multiple-thread mode (SIMT) on a

streaming multiprocessor (SM)

SM hardware implements zero-overhead

warp and thread scheduling

Threads can execute independently

SIMT warp diverges and converges when threads branch

independently

Best efficiency and performance when threads of a warp

execute together, so no penalty if all threads in a warp take

same path of execution

Each SM executes up to 1024 concurrent threads, as 32

SIMT warps of 32 threads

© NVIDIA Corporation 2009

Memory Model

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

Thread:

Local memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

Thread:

Local memory

Block of threads:

Shared memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

Thread:

Local memory

Block of threads:

Shared memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

Thread:

Local memory

Block of threads:

Shared memory

All blocks:

Global memory

© NVIDIA Corporation 2009

Memory hierarchy

Thread:

Registers

Thread:

Local memory

Block of threads:

Shared memory

All blocks:

Global memory

© NVIDIA Corporation 2009

Shared Memory

More than 1 Tbyte/sec

aggregate memory bandwidth

Use it
As a cache

To reorganize global memory

accesses into coalesced pattern

To share data between threads

16 kbytes per SM

SMC

Geometry Controller

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SM

TPC

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

© NVIDIA Corporation 2009

Texture Memory

Texture is an object for reading data

Data is cached

Host actions

Allocate memory on GPU

Create a texture memory reference

object

Bind the texture object to memory

Clean up after use

GPU actions

Fetch using texture references

text1Dfetch(), tex1D(), tex2D(),

tex3D()

GPU

Interconnection Network

SMC

Geometry Controller

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Texture Unit

Tex L1

SMC

Geometry Controller

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Texture Unit

Tex L1

DRAM

ROP L2

DRAM

ROP L2

Bridge Memory

Work Distribution

Host CPU

SM

SP

Shared
Memory

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

© NVIDIA Corporation 2009

Constant Memory

Write by host, read by GPU

Data is cached

Useful for tables of constants

SMC

Geometry Controller

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

Texture Unit

Tex L1

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

SM

TPC

SP

DP

SP

SP SP

SP SP

SP SP

I-Cache

MT Issue

C-Cache

SFU SFU

Shared
Memory

© NVIDIA Corporation 2009

Memory Spaces

Memory Location Cached Access Scope Lifetime

Register On-chip N/A R/W One thread Thread

Local Off-chip No R/W One thread Thread

Shared On-chip N/A R/W All threads in a block Block

Global Off-chip No R/W All threads + host Application

Constant Off-chip Yes R All threads + host Application

Texture Off-chip Yes R All threads + host Application

© NVIDIA Corporation 2009

CUDA C

© NVIDIA Corporation 2009

CUDA C — C with Language Extensions

Function qualifiers

__global__ void MyKernel() {} // call from host, execute on GPU

__device__ float MyDeviceFunc() {} // call from GPU, execute on GPU

__host__ int HostFunc() {} // call from host, execute on host

Variable qualifiers

__device__ float MyGPUArray[32]; // in GPU memory space

__constant__ float MyConstArray[32]; // write by host; read by GPU

__shared__ float MySharedArray[32]; // shared within thread block

Built-in vector types

int1, int2, int3, int4

float1, float2, float3, float4

double1, double2

etc.

© NVIDIA Corporation 2009

CUDA C — C with Language Extensions

Execution configuration
dim3 dimGrid(100, 50); // 5000 thread blocks

dim3 dimBlock(4, 8, 8); // 256 threads per block

MyKernel <<< dimGrid, dimBlock >>> (...); // Launch kernel

Built-in variables and functions valid in device code:
dim3 gridDim; // Grid dimension

dim3 blockDim; // Block dimension

dim3 blockIdx; // Block index

dim3 threadIdx; // Thread index

void __syncthreads(); // Thread synchronization

© NVIDIA Corporation 2009

CUDA C — C with Runtime Extensions

Device management:
 cudaGetDeviceCount(), cudaGetDeviceProperties()

Device memory management:
 cudaMalloc(), cudaFree(), cudaMemcpy()

Texture management:
 cudaBindTexture(), cudaBindTextureToArray()

Graphics interoperability:
 cudaGLMapBufferObject(), cudaD3D9MapVertexBuffer()

© NVIDIA Corporation 2009

SAXPY: Device Code

void saxpy_serial(int n, float a, float *x, float *y)

{

 for (int i = 0; i < n; ++i)

 y[i] = a*x[i] + y[i];

}

__global__ void saxpy_parallel(int n, float a, float *x, float *y)

{

 int i = blockIdx.x*blockDim.x + threadIdx.x;

 if (i < n) y[i] = a*x[i] + y[i];

}

Parallel C Code

Standard C Code

. . .

blockDim.x

blockIdx.x

threadIdx.x

© NVIDIA Corporation 2009

SAXPY: Host Code
// Allocate two N-vectors h_x and h_y
int size = N * sizeof(float);
float* h_x = (float*)malloc(size);
float* h_y = (float*)malloc(size);

// Initialize them...

// Allocate device memory
float* d_x; float* d_y;
cudaMalloc((void**)&d_x, size));
cudaMalloc((void**)&d_y, size));

// Copy host memory to device memory
cudaMemcpy(d_x, h_x, size, cudaMemcpyHostToDevice);
cudaMemcpy(d_y, h_y, size, cudaMemcpyHostToDevice);

// Invoke parallel SAXPY kernel with 256 threads/block

int nblocks = (N + 255) / 256;
saxpy_parallel<<<nblocks, 256>>>(N, 2.0, d_x, d_y);

// Copy result back from device memory to host memory
cudaMemcpy(h_y, d_y, size, cudaMemcpyDeviceToHost);

© NVIDIA Corporation 2009

Launching a Kernel

Call a kernel with
Func <<<Dg,Db,Ns,S>>> (params);

dim3 Dg(mx,my,1); // grid spec

dim3 Db(nx,ny,nz); // block spec

size_t Ns; // shared memory

cudaStream_t S; // CUDA stream

Execution configuration is passed to

kernel with built-in variables
dim3 gridDim, blockDim, blockIdx,

 threadIdx;

Extract components with
threadIdx.x, threadIdx.y,

threadIdx.z, etc.

Host

Kernel 1

Kernel 2

Device

0 1 2 3

4 5 6 7

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

1D

2D

© NVIDIA Corporation 2009

Execution Configuration

How many blocks?

At least one block per SM to keep every SM occupied

At least two blocks per SM so something can run if block is waiting for a synchronization

to complete

Many blocks for scalability to larger and future GPUs

How many threads?

At least 192 threads per SM to hide read after write latency of 11 cycles (not necessarily

in same block)

Use many threads to hide global memory latency

Too many threads exhausts registers and shared memory

Thread count a multiple of warp size

Typically, between 64 and 256 threads per block

vectorAdd <<< BLOCKS, THREADS_PER_BLOCK >>> (N, 2.0, d_x, d_y);

x = y + 5;

z = x + 3;

© NVIDIA Corporation 2009

Expensive Operations

sin(), exp() etc.; faster, less accurate versions are __sin(), __exp() etc.

Integer division and modulo; avoid if possible; replace with bit shift

operations for powers of 2

Branching where threads of warp take differing paths of control flow

© NVIDIA Corporation 2009

Compilation

© NVIDIA Corporation 2009

Linux

Separate file types

.c/.cpp for host code

.cu for device/mixed code

Typically makefile driven

cuda-gdb, Allinea DDT,

TotalView for debugging

CUDA Visual Profiler

© NVIDIA Corporation 2009

Visual Studio

Separate file types

.c/.cpp for host code

.cu for device/mixed code

Compilation rules: cuda.rules

Syntax highlighting

Intellisense

Integrated debugger and

profiler: Nsight

© NVIDIA Corporation 2009

Compilation Commands

nvcc <filename>.cu [-o <executable>]

Builds release code

nvcc –g <filename>.cu

Builds debug CPU code

nvcc –G <filename>.cu

Builds debug GPU code

nvcc –O <level> <filename>.cu

Builds optimised GPU code

THANKS!
Carlo Nardone

+39 335 5828197

cnardone@nvidia.com

