
Carlo Nardone

Sr. Solution Architect, NVIDIA EMEA

CUDA PROGRAMMING MODEL

2

CUDA: COMMON UNIFIED DEVICE
ARCHITECTURE

Parallel computing architecture
and programming model

Includes a CUDA C compiler,
support for OpenCL and
DirectCompute

Architected to natively support
multiple computational interfaces
(standard languages and APIs)

 NVIDIA GPU with the CUDA parallel computing
architecture

CUDA C OpenCLÊ DirectCompute CUDA Fortran

GPU Computing Application

C C++ Fortran Java C# é

3

NVIDIA CUDA EVOLUTION

4

Computing Model

5

PROCESSING FLOW

1. Copy input data from CPU memory to GPU

memory

2. Load GPU program and execute,

caching data on chip for performance

3. Copy results from GPU memory to CPU

memory

PCI Bus

© NVIDIA Corporation 2009

CUDA Kernels

Parallel portion of application: execute as a kernel

Entire GPU executes kernel, many threads

CUDA threads:

Lightweight

Fast switching

1000s execute simultaneously

CPU Host Executes functions

GPU Device Executes kernels

© NVIDIA Corporation 2009

CUDA Kernels: Parallel Threads

A kernel is an array of threads,

executed in parallel

All threads execute the same

code

Each thread has an ID

Select input/output data

Control decisions

float x = input[threadID];

float y = func(x);

output[threadID] = y;

© NVIDIA Corporation 2009

Key Idea of CUDA

Write a single-threaded program parameterized in terms of the

thread ID.

Use the thread ID to select a subset of the data for processing,

and to make control flow decisions.

Launch a number of threads, such that the ensemble of threads

processes the whole data set.

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks

Threads are grouped into blocks

Blocks are grouped into a grid

