®

<A NnVIDIA

CUDA PROGRAMMING MODEL

Carlo Nardone

NVIDIA EMEA

Sr. Solution Architect

CUDA: COMMON UNIFIED DEVICE
ARCHITECTURE

® Parallel computing architecture
and programming model

GPU Computing Application

® Includes a CUDA C compiler, ¢][Crt][Fortra”] Java] C# [e
support for OpenCL and - - .
DlrectCompute CUDAC] [OpenC L]§ DirectCompute] [CUDA Fortran

NVIDIA GPU with the CUDA parallel computing 1

® Architected to natively support L architecture
multiple computational interfaces
(standard languages and APIs)

SANVIDIA.

NVIDIA
CUDA

Compiler
Tool Chain

Programming
Languages

Developer
Tools

NVIDIA CUDA EVOLUTION

nheri € LLVM Dev1.ce.Code
B Linking

1} i 1...00. 00000 0.tlI.00.0..O..;.;.......+........’
1.0 2.0 3.0 4.0 5.0

OpenACC
P Dynamic

Parallelism

EE IR R E R RN E RN N E RN R RN RN R RN R R R R N R R R N R R R R R N R N N N R R NN Q.....O..Q.....’

GPUDirect
Thrust ., .,

cuSparse

C C++
Fortran (PGl)

UVA

cuBLAS

NVPP _ Device API

cuRand

EEETENEEENEENEEE NN RN N EENEE NN EENENEE RN E NN NEENRNNENNNNNRN) 7..VQ;‘.“.;.O.............’

n [Nsight IDE Nsight
e Eclipse Ed.
R e e New Visual Detect
nvidia-smi Profiler ,
©2013

SANVIDIA.

Computing Model

\M;%
MY

BT VANV

B NANNNRE

,‘ Emmmnmzazﬂg

S
N Rnnneees

BSOSO SS

PROCESSING FLOW

o
&
=
@
a

i

— ——

1. Copy input data from CPU memory to GPU
memory

2. Load GPU program and execute,
caching data on chip for performance

3. Copy results from GPU memory to CPU
memory

—
I

CUDA Kernels <

NVIDIA

.

Parallel portion of application: execute as a kernel
* Entire GPU executes kernel, many threads

.

CUDA threads:
* Lightweight
® Fast switching
1000s execute simultaneously

CPU Host Executes functions
GPU Device Executes kernels

© NVIDIA Corporation 2009

CUDA Kernels: Parallel Threads

* A kernel is an array of threads,

executed in parallel

* All threads execute the same

code

® Each thread has an ID

Select input/output data
® Control decisions

© NVIDIA Corporation 2009

<3

NVIDIA

BEEEE

float x = input[threadID];

\.

float y = func(x);
output[threadID] =;

Key Idea of CUDA <3

NVIDIA

* Write a single-threaded program parameterized in terms of the
thread ID.

* Use the thread ID to select a subset of the data for processing,
and to make control flow decisions.

®* Launch a number of threads, such that the ensemble of threads
processes the whole data set.

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks <3

NVIDIA.

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks <3

NVIDIA.

© NVIDIA Corporation 2009

CUDA Kernels: Subdivide into Blocks <3

NVIDIA
()
r 2 e N\ r N\

\. J \. J \. J
_ J

® Threads are grouped into blocks
* Blocks are grouped into a grid

© NVIDIA Corporation 2009

