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Recommender Systems
(RecSys)




Today’s talk is about

Everything you wanted to know about RecSys
but were afraid to ask
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We will also learn

How to do this ... ... as fast as possible ...

... with the help of ...

NVIDIA
MERLIN

Cartoon by Rina Piccolo 5

https://www.rinapiccolo.com/
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RecSys are Everywhere

The usual suspects

NETFL'X amazon e Spotify

Other movies you may enjoy  Customer who bought this New releases for you
item also bought

facebook P GooglePlay

People you may know Recommended for you

Linked [T}

Jobs you may be interested in

6 @A NVIDIA.




People who Iiked this also Iiked.. ‘ V _ RecSyS are Eve I"yWh ere

Also in your non-digital life!

Matapouri Bay Mamanuca Islands Erawan Falls
554 km East 2430 km North 9714 km North West

People who liked this old wall also liked...

Sticks Drinks Other Dogs
Everywhere 900m South East 200m North East

Huia Lodge Campbell Statue Memorial Plaque
550m South West 1100m North West 300m South

2 &

http://scottandbenorbenandscott.com/#/signs-of-the-times

7 <ANVIDIA.
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Recommender Systems

My user experience

Recommendations based on TV shows:
* | have liked before.

| have watched before.

@A NVIDIA. 8
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Recommender Systems

My user experience

Recommendations based on TV shows:

¢ I h ave li ked befo re ° Because you liked Cobra Kai
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Recommender Systems

My user experience

Recommendations based on TV shows:
* | have liked before.

| have watched before.

.. and it works quite well:

TV shows | have already )
watched and liked. ¥ 33%

« TV shows | haven’t
watched yet, but I'd %: 50%
like to watch.
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Recommender Systems

My user experience

Recommendations based on TV shows:
¢ I have li ked before. Because you liked Cobra Kai

| have watched before. [}“

IR@N FIST \
4,/,
.. and it works quite well:

Because you watched The Stranger

. " SHERLOCK =
e TV shows | have already =

watched and liked. v:33% JAE “
TV shows | haven’t el
watched yet, but I’d &: 50% Y f’l‘
like to watch. , QOO ndb
T4 S _ o=
* TV shows | am not sure ©: 179 Watch t Agin <
I’d like to watch. CEP -
THE gt
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RecSys Techniques




Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

watched by both users

similar users

M

N

watched /r'ecommended
by her E to him

Diagrams by Emma Grimaldi. 13 < NVIDIA .



Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

watched by both users

recommended
to him

watched
by her

3 JOE \‘ERSUSTHE
VOLCANO

Diagrams by Emma Grimaldi. 14 @A NVIDIA.



Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

watched by both users watched by user

TOM HANKS MEG RYAN p
. N Y 3 '
e SLEEPLESS 2% [
’\\ X SEATTLE N s
A I

similar
movies

&

recommended /r1ecommended
to him E to him

watched
by her

} JOE ‘ERSUSTHE
VOLCANO

Diagrams by Emma Grimaldi.

15
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Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

watched by both users watched by user
T : e ._ Genres:
ST e o R * Comedy
), TunuY 3 I — O o R - Romance
AN L " i =< I * I Cast:
- Tom Hanks
- Meg Ryan

similar
movies

watched recommended Cenres: recommended
by her to him - Comedy to him
- Romance
_ Cast: 4
VOLCANO - Tom Hanks VOLCANO
- Meg Ryan
Diagrams by Emma Grimaldi.

16
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Collaborative Filtering




Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

A graph is a set of objects called
nodes or vertices that are connected
together.

The connections between the nodes
are known as edges or links.

_____

A bipartite graph, or bigraph, is a
graph whose nodes can be divided
into two disjoint and independent
sets, and such that every edge
connects a node in one set to one
node in the other set.

18
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Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

19
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Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

20
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Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

How could | teach

a computer to

recommend movies?

21
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Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

Jaccard Similarity Overlap Coefficient

|AN B]| |ANB]|
is(A,B) = Ny oc(A,B) =
Js ) |AUB| <ﬂ /—> ( ) min(|A|, |B]|)
..

Intersection Union Intersection

22 <A NVIDIA.



Collaborative Filtering

A graph-based approach
Jaccard Similarity vs Overlap Coefficient

Jaccard Similarity Overlap Coefficient
|ANB| |ANB|
IS(A,B) = c(A,B
S YTITY N ot B) = AT 1B])
..
Intersection Union Intersection
Jaccard ‘ Overlap

A B 100 100 0.333 0.500

A B 110 90 0.333 0.556

A B 120 80 0.333 0.625

A B 130 70 0.333 0.714

A B 140 60 0.333 0.833

A B 150 50 0.333 1.000

23 <ANVIDIA.




Collaborative Filtering

A clustering approach

k-Means + KNN

We will group the items we would like to recommend
in different clusters.

Unsupervised machine learning task:

/ Finding groups in a features space.

There are multiple clustering algorithms:

/ k-Means, DBSCAN, Gaussian Mixture Model...

k-Means clustering:
/ The number of clusters is a hyperparameter.

/ It is a non-deterministic algorithm:

- Initial means are randomly generated.

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

1.00

0.75

0.50

0.25

0.00

-0.25

-0.50

-0.75

k-Means (k=3)

http://syskall.com/kmeans.js

Cluster 0
Cluster 1
Cluster 2
Centroids

Initial means

Cluster 0
Cluster 1
Cluster 2
Cluster 3
Centroids
Initial means

24
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Collaborative Filtering

A clustering approach
k-Means + KNN

M“

0000 The Lion King 2019 Adventure $260,000,000

0001 Toy Story 1995 Comedy $30,000,000 USA
3098 Seven Samuray 1954 Action $1,129,178 Japan
3099 Good Will Hunting 1997 Drama $10,000,000 USA

import cudf
import cuml

df = cudf.read csv('movies.csv')

kmeans = cuml.KMeans(n_clusters=10, max_iter=300, init='random')
kmeans.fit(df)

df[ 'cluster'] = kmeans.labels

k-Means (k=10)

25 <ANVIDIA.



Collaborative Filtering

A clustering approach
k-Means + KNN

00000 Camilla Manning 0000 The Lion King 00000 2137

00001 Eloise Banks 0001 Toy Story 3 00000 1624 3
21347 Nadia Reynolds 3098 Seven Samuray 1 21348 3097 9
21348 Stephen Daniel 3099 Good Will Hunting - 7 21348 1943 6

o userid
00000 | 00001 | 00002 | 00003 - | 21345 | 21346 | 21347 21343 8
0 0 0 0 0 9 0 0

_user
ratings

26 <ANVIDIA.



Collaborative Filtering

A clustering approach
k-Means + KNN

L 4 e &) [5) b @
k-Nearest Neighbours (k-NN) finds a predefined number of o © & . v s o, °
.. : : : : . © ® o o
training samples closest in distance to a point, and predicts e ° 2ed Go ° %o o
e ® ©] ® " @ o0
its label from these. S ® . © ° o %o o o .
8 o | P
/ The ‘euclidean’ metric is unhelpful in high dimensions. "o 2 o °% ® :5' < « o
o
. .. p .y . % o ® o. . ° e ° o
/ The user ratings matrix is sparse - use ‘cosine’ metric. . ° % oo | @ .
@ @ ) @ ® © ‘
@ @ ® s. @ >
import cudf o ® o ® @ ©©
- ® o e ' © o0&
import cuml s o o eg° 8.° o ° - © o0 o
00 o . @‘ o 4 o
df = cudf.read csv('movie ratings.csv') o0 il o ° ?s ° &, ?
© O o @ 10
° Do .0 © oo o Oo' o ° o
knn = cuml.NearestNeighbors(n_neighbors=5, metric='cosine') ° - °me o ° O..o;. ® o :‘ oo © ®°® %
knn. fit(df °o o o ©
# o oo © ° ° ° :@ ° Q, ® o o o °° °
‘e o .
- . _ . . o O ®o o *
distances, movies = knn.kneighbors(user fav_movies df) . o o @. © o, o .o- o ©

New movie classification

27 <ANVIDIA.



Content-based Filtering




Skittles

Snickers

Caramel
Chew

Content-based Filtering

A sweet example

29
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Skittles

Snickers

Caramel
Chew

Content-based Filtering

A sweet example

Chocolate

Skittles

Snickers

Caramel
Chew

Colorful Caramel

Chewy

30
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Skittles

Snickers

Caramel
Chew

Content-based Filtering

A sweet example

Skittles

Snickers

Caramel
Chew

Candy

Chocolate

Chocolate

Round

Round

Colorful

Colorful

Fruity

Fruity

Caramel

Caramel

Chewy

Chewy

31

<ANVIDIA.



Skittles

Snickers

Caramel
Chew

Lara’s

Prediction

Content-based Filtering

A sweet example

Skittles

Snickers

Caramel
Chew

Skittles

Snickers

Caramel
Chew

Chocolate

Fruity | Caramel | Chewy

Candy

Chocolate| Round | Colorful Fruity | Caramel

Divide by Total Sum

Chocolate| Round | Colorful Fruity | Caramel

32
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Collaborative Filtering
VS
Content-base Filtering




Collaborative Filtering

A few things to consider

Popularity bias:
/ Popular items are more likely to be recommended.
Cold start issues:

/ New community:

- Refers to the system startup.

- No data available the recommender can rely on.

/ New user:

- The system cannot rely on the user’s past
interactions to provide any recommendation.

/ New item:

- New items added to the catalogue have either
none or very little interactions.

# ratings

items

Long tail ratings distribution

34
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Content-base Filtering

A few things to consider

/ Popularitems-are-more-likely to-be recommended-

Cold start issues:

/ New community:
- Refers to the system startup.

- No data available the recommender can rely on.
/ New user:

- The system cannot rely on the user’s past
interactions to provide any recommendation.

/ New-item: New community issue

 News ded to ¢! I I "
ittle ons

35 <ANVIDIA.



Collaborative Filtering vs Content-based Filtering

No need to choose

m Collaborative Filtering Content-based Filtering

No Human
aman J X
Feature Engineering
Good at Expandi
| Xp ing Y X
User's Interest
Can Recommend
. i X V4
Highly Specific Items
Can Recommend
X v

New ltems

Solution: hybrid approach combining both techniques.

Diagrams by Emma Grimaldi. 36 <A NVIDIA.



Deep Learning Based
Recommender Systems




Wide & Deep Neural Architecture

Input layer

Learning how not to forget

Hidden layers Output layer

Features
memorisation

——

»
O-
®
O
®

‘ —_—

Embeddings Fully connected
layer layers % Snvioia

o O =
N (A
s S
SO
9 S~ K&/ _ Features
C S RSN o O\ Generalisation
L2 NS> ‘V[ %
25 SN
0 s Vg A
9o



Wide & Deep Neural Usage Examples

A widely and deeply used architecture

Google Wide & Deep Neural Collaborative Filtering Facebook DLRM

Score Trammg@ Target |

/ /L;yTer\X\ \ T
\ // Layer 1 \ j . A A\ A

w.
",
s

\ \ \.l
User Latent Vector Item Latent Vector D - -
/ ><PM><K = {Pur} >< Quxk = {Qi}
‘ \ f t
o/o[o | olo] . o[olof[ofa]o] .- \_ y )
Sparse features User (u) Item (i) Dense features Sparse features
https://arxiv.org/abs/1606.07792 https://arxiv.org/abs/1708.05031 https://arxiv.org/pdf/1906.00091.pdf

39 <ANVIDIA.
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Embeddings,
Embeddings,
Embeddings.




Huge Number of Customers and Products

Someone said embeddings?

One-hot encoding = large sparse matrix
user_id_1 user_id_2 user_id_3 user_id_10°

10° users Smaller dense embedding matrix

user_id

. feat_2 feat_3

200650946 0 0.20043  0.15545 0.97712
447945298 0 - 0.61397 0.15097 0.74054
473849537 :)) :)) 0.84247  0.35971 0.97123

0.15785

329521575 ’ 0.00279  0.57935
U

107 >>> 10°

41 <A NVIDIA.



NVIDIA Merlin




Recommendation Pipelines

User
interaction

Recommender System

Candidate generation

I_Llf-™
e

|
User
ltem Preferences
Inventory
0(109)

Model(s)

Example

DATA LAKE

10001vivvvee oo v vvouiui 10010
100110000101001100001001010114

1011100100001010010010101 2
' 11101107100011117

Train data
GBs to TBs

- Feature engineering

Train data - Feature engineering

>
TBs to PBs - Data Pre-processing

- Model(s) training

Yes

- Data Pre-processing
- Model(s) training

No

43
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Recommendation Pipelines
Challenges

Data (ETL)

Feature Data loading

exploration

* Huge data sets: « Data loading can
TBs, PBs or more. be > 50% of total
training time.

A 4

A 4

 Complex data
preprocessing and < Tabular data

feature loading scales

engineering poorly with an

pipelines. item-by-item
approach.

* Many iterations
required.

44 <ANVIDIA.



Recommendation Pipelines

Data (ETL)

Feature

exploration

Huge data sets:
TBs, PBs or more.

Complex data
preprocessing and
feature
engineering
pipelines.

Many iterations
required.

Data loading

Data loading can
be > 50% of total
training time.

Tabular data
loading scales
poorly with an
item-by-item
approach.

Challenges

A 4

Training

Huge embedding
tables

Large embedding
tables exceed
single GPU
memory.

Sub-optimal
lookups ops
implementation.

Performance &

Accuracy

Hard to achieve
high scaling
efficiency with
both model and
data parallelism.

Longer iteration
cycles reduce the
ability to reach
higher accuracies
quickly.

A 4

45
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Recommendation Pipelines

Data (ETL)

Feature
exploration

Huge data sets:
TBs, PBs or more.

Complex data
preprocessing and
feature
engineering
pipelines.

Many iterations
required.

Data loading

Data loading can
be > 50% of total
training time.

Tabular data
loading scales
poorly with an
item-by-item
approach.

Challenges

A 4

Training

Huge embedding

tables

Large embedding
tables exceed
single GPU
memory.

Sub-optimal
lookups ops
implementation.

Performance &

Accuracy

Hard to achieve
high scaling
efficiency with
both model and
data parallelism.

Longer iteration
cycles reduce the
ability to reach
higher accuracies
quickly.

\ 4

Inference

Throughput &

Latency

Difficult to have
high throughput
and low latency
when ranking a

huge number of
items.

46
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NVIDIA Merlin
DATA (ETL)

What it is:

Feature engineering and preprocessing library designed to
quickly and easily manipulate terabytes of tabular data.

What it’s capable of:

- Scale - No limit on dataset size (not bound by GPU or CPU
memory).

- Speed - GPU acceleration, 10x speedup compared to CPU,
eliminate input bottleneck.

- Usability - Higher level abstraction, recommender systems
oriented, fewer API calls are required to accomplish the same
processing pipeline.

- Interoperability with PyTorch, TensorFlow, and HugeCTR.

NV Tabular

TRANSFORM LOAD

l PROCESSES
DATA
WAREHOUSE

ETL - Extract, Transform, Load

47
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NVIDIA Merlin

Training (1 of 2)

CTR 1
What it is: \ H ugeCTR

Highly efficient C++ GPU framework and reference design
dedicated for recommendation workload training.

Node0 Node1
What it’s capable of: GPUO GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3

- Model and Data parallelism.

- Scale embedding across multiple GPUs and multiple nodes.

- Designed for distributed training with model-parallel
embedding tables and data-parallel neural networks.

YJOMISN |einan
YIOMISN |einaN
}JOMJaN |einaN
YIOMISN |einaN
MIOMISN |BinaN
}JOMISN |BinaN
}IOMJSN [elnaN
}IOMJBN [BInaN

- Supports a range of model architectures:

- DCN,
DeepFM,
- DLRM,
- W&bD.

Embedding

48 <ANVIDIA.



NVIDIA Merlin

Training (2 of 2)

Reference

What it is:

Open source reference implementations for popular DL
recommender models in TensorFlow and PyTorch.

What it’s capable of:
- State-of-the-art accuracy on public datasets.

- Up to 67x acceleration compared to CPU implementation.

- Supports a range of model architectures:

DLRM (PyTorch),

NCF (TensorFlow, PyTorch),
VAE-CF (TensorFlow),

W&D (TensorFlow).

Example: DLRM architecture

Click
probability

Pairwise interaction

Embedding Embedding
table 1 table M

Numerical ... Numerical Categorical ... Categorical
feature 1 feature N feature 1 feature M

49
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NVIDIA Merlin

Inference

What it is:

TensorRT is an SDK for high performance DL inference.
Triton Server is a GPU-optimized inferencing solution.

What it’s capable of:

- Maximizes GPU utilization.
- Maximizes throughput at the desired latency.

- For instance, W&D TensorRT Inference pipeline, compared to
an equivalent CPU solution, provides:

- Up to 18x reduction in latency,
- Up to 17.6x improvement in throughput.

50 <ANVIDIA.



Data (ETL)

NVIDIA Merlin

Components Summary

Training

A

Inference
1

NV

A feature engineering and preprocessing
library designed to quickly and easily
manipulate petabytes of tabular data.

Scales Easily: No limit on dataset size (not
bound by CPU or GPU memory).

GPU-accelerated, eliminating CPU
bottlenecks.

Dataloader acceleration and interoperable
with PyTorch, Tensorflow, and HugeCTR.

CTR

A highly efficient C++ GPU framework and
reference design dedicated for
recommendation workload training.

Supports multiple model architectures:

« DCN

* DeepFM
« DLRM
« W&D

Designed for distributed training.

Reference

Get started with open source reference
implementations and achieve state-of-the-
art accuracy on public datasets.

Supports multiple model architectures:

* DLRM (PyTorch)

* NCF (TensorFlow, PyTorch)
* VAE-CF (TensorFlow)

« W&D (TensorFlow)

Up to 67x acceleration, compared to CPU-
based implementations.

and Triton

Take advantage of TensorRT and Triton to
run inference efficiently on GPUs by
maximizing throughput with the right
combination of latency and GPU utilization.

Compare 10x the number of candidates at
the same SLA cost for less.
Acceleration example for Wide & Deep:

« 18x reduction in latency,
« 17x improvement in throughput,

compared to an equivalent CPU solution.

TRANSFORM LOAD

) ' "uom“‘ J -
DATA
WAREHOUSE

ETL - Extract, Transform, Load

Node0 Node1
GPU0O GPU1 GPU2 GPU3 GPUO GPU1 GPU2 GPU3
A HEHEH HEHE
A B B E B B HEE
s Mo o Mo s M c Mo Mo
A HEH B EHHE
x> > = = 3 x~ = =

Embedding

Click
probability

Pairwise interaction

Embedding
table M

Embedding
table 1

Categorical
feature M

Categorical
feature 1

Numerical
feature N

Numerical
feature 1

51
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NVIDIA Merlin

Deep Recommender Application Framework

Data (ETL)

A

NVTabular

RAPIDS

Magnum 10

Training Inference

USER EMBEDDINGS

1

I

I

I

I

I

I

I

CANDIDATES | ©0(1000) I
HugeCTR GENERATION > RANK'NG:
I

I

I

I

I

I

/+

A\

O(Billions) T

ITEM EMBEDDINGS

Triton Inference Server
Magnum 10 TensorRT

0(10)
Recommendation

User Query

Data lake
100’s PB

52
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NVTabular




v i
=)
start ETL workflow

get a coffee "\

configure ETL workflow — /

dataset downloads
overnight

R

GPU-Accelerated ETL

The average data scientist spends up to 80% of their
time in ETL, as opposed to training models

'J'

B another...  @*#! forgot to add a feature Find unexpected null values  restart ETL

*J

- tored tring... i
get a\coffee / / stored as string ‘ train model

/ validate

 test model

restart ETL workflow \ /
eh, forgot to add a feature

—.  start ETL
\ZJ workflow™

B
" S configure ETL
CPU switch to decaf gworkﬂow Vo=
POWERED . POWERED
WORKFLOW/, | ’ WORKFLOW
Find unexpected null values
/ stored as string...
i \ dataset downloads :
ernight
I restart ETL workflow again ovene \
go home
stay late on time

experiment with
optimizations

& repeat

{

LEGEND

-~

dataset collection
analysis

ETL

train

inference
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Built on top of RAP)DS

CPU version GPU-Accelerated
Pandas
Analytics
Scikit-Learn A V4
Machine Learnin M 5 %’
= ° y, = S 2
s = s L
o NetworkX < o cuGraph
= | D =
Q) Graph Analytics 3 Q
=3 >
S @) S
(o] - (o]
<

Pytorch, MxNext,
TensorFlow

Deep Learning

Pytorch, MxNext,
TensorFlow

G)
U
-
=
9
3
O
D)
<

pyViz, Plotly,

Matplotlib, Plotly cuXfilter

Visualization

WWW.rapids.ai 55 <Anvibia



http://www.rapids.ai/

10000

ﬂé 1000
©
v
on
S
B
g

- 100
k=
-
=
e
o+
on
c

9 10

1

CPU: AWS r5d.24xl, 96 cores, 768 GB RAM

GPU: 1 x NVIDIA V100 32GB

Case Study: 1TB Ads Dataset

ETL 660x faster. Training 96x faster.

2880
60
Numpy CPU ETL Optimised Spark CPU ETL
+ +
CPU Training PyTorch GPU Training

https://github.com/NVIDIA/NVTabular/blob/master/examples/criteo-example.ipynb

mETL

30

NVTabular GPU ETL
+

HugeCTR GPU Training

Training

56
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https://github.com/NVIDIA/NVTabular/blob/master/examples/criteo-example.ipynb

NVTabular Key Features
Faster and Easier GPU-based ETL

Focused on recommendation use cases. It requires
fewer API calls to accomplish the same tasks.

GPU-accelerated, eliminating CPU bottlenecks.

Out-of-core execution. No GPU memory limits and
reduced 1/0 through lazy execution.

Pytorch, TensorFlow and HugeCTR compatible.

Triton Inference Server support.

Dataset size limitation
Code complexity

Lines of code

Flexibility

Data loading Transforms

Inference Transforms

NVTabular

ﬁlpandqs

Unlimited CPU Memory
Simple Moderate
10 - 20 100 - 1000
Domain specific General
Yes No
Yes No

57
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NVTabular vs Pandas code

100x fewer lines of code required

import glob
import nvtabular as nvt

# Create datasets from input files
train_files = glob.glob("./dataset/train/*.parquet")
valid files = glob.glob("./dataset/valid/*.parquet")

train_ds = nvt.Dataset(train files, gpu memory frac=0.1)
valid ds = nvt.Dataset(valid files, gpu memory frac=0.1)

# Initialise workflow

cat _names = ["C" + str(x) for x in range(1l, 27)] # Specify categorical feature names
cont_names = ["I" + str(x) for x in range(1, 14)] # Specify continuous feature names
label name = ["label"]| # Specify target feature

proc = nvt.Workflow(cat names=cat _names, cont names=cont_names, label name=label name)

# Add feature engineering and pre-processing ops to workflow

proc.add cont_feature([nvt.ops.ZeroFill(), nvt.ops.LogOp()])

proc.add cont_preprocess(nvt.ops.Normalize())

proc.add cat preprocess(nvt.ops.Categorify(use frequency=True, freq_ threshold=15))

# Compute statistics, transform data, and export to disk

proc.apply(train_dataset, shuffle=True, output path="./processed data/train"”, num out files=len(train_files))
proc.apply(valid dataset, shuffle=False, output path="./processed data/valid"”, num out files=len(valid files))

Equivalent Pandas/Numpy code: https://github.com/facebookresearch/dirm/blob/master/data_utils.py

Import libraries.

Create training and
validation datasets.

Initialise workflow
specifying categorical,
and continuous data.

Zero fill any nulls, log
transform and normalise
continuous variables.
Encode categorical data.

Apply the operations,
creating new shuffled
training and validation
datasets.
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NVIDIA NGC

Y Search containers

3

NVIDIA.

a Loading with DALI

Demonstration of how you can use the
new DALI functional API to accelerate and
scale an image data loading pipeline to
dramatically accelerate deep learning wo.

<ANVIDIA.

NvTabular is a feature engineering and
preprocessing library for tabular data
designed to quickly and easily manipulate
terabyte scale datasets used to train dee..

A

NVIDIA.

NVIDIA L4T is a Linux based software
distribution for the NVIDIA Jetson
embedded computing platform

<X

NVIDIA.

Triton Infer

Triton Inference Server provides a data
center inference solution optimized for
NVIDIA GPUs. It maximizes inference
utilization and performance on GPUs via

<

NVIDIA.

NVIDIA HPC

The NVIDIA HPC SDK is a comprehensive
suite of compilers, libraries and tools
essential to maximizing developer
productivity and the performance and po.

=

NVIDIA.

ng Toolkit f

NVIDIA's Transfer Learning Toolkit is a
python-based Al training toolkit that allows
developers to train faster and accurate
neural networl

A\ deepvisionai

Deep Vision Al Inc. applies proprietary
advanced computer vision technalogy to
understand images and video
automatically, turning visual content into ..

<

NVIDIA.

The Smart Parking Detection container
includes the DeepStream application and
the plugins for an example application of a
smart parking solution.

NVIDIA TensorRT is a C++ library that
facilitates high-performance inference on
NVIDIA graphics processing units (GPUS).
TensorRT takes a trained network, which

<3

NVIDIA.

Demonstration of GPU Accelerated

Machine Learning Data Science workflows
using RAPIDS.

https://ngc.nvidia.com

n the popular deep lear...

Getting Started
\. NVIDIA NGC + GitHub

3

NVIDIA.

DeepStream SDK delivers a complete
streaming analytics toolkit for real-time Al
based video and image understanding and
multi-sensor processing. Deepstream SD.

LAT TensorFlow

TensorFlow is an open-source software
library far numerical computation using
data flow graphs. Nodes in the graph
represent mathematical operations, whil..

The Microsoft Cognitive Toolkit, formerly

known as CNTK, is a unified deep-learning
toolkit that describes neural networks as a
series of computational steps via a direct..

PyTorch is a GPU accelerated tensor
computational framework with a Python
front end. Functionality can be easily
extended with common Python libraries s.

<

NVIDIA.

ERT and Ne.

Text Classification with BERT and NeMo,
This NeMo application trains text
classification models using single-GPU or
multi-GPU. We log performance metrics a.

cnvrg.io CORE

Community Platform

cnvrg.io CORE

envrg.ia is an Al O, transforming the way
enterprises manage, scale, and accelerate
Al and data science development from
research to production. crvrg.io CORE is

NV

A LAT PyTorch

PyTorch is a GPU accelerated tensor
computational framework with a Python
front end. Functionality can be easily
extended with common Python libraries s.

Caffe2 is a deep-learning framework
designed to easily express all model types
for example, CNN, RNN, and more, in a
friendly python-based AP, and execute t.

Kaldi is an open-source software
framework for speech processing

<

NVIDIA.

Demo

How to deploy pre-trained models from
NGC into an intelligent video analytics (IVA)
pipeline in DeepStream

Sort: Last Modified v

- Pull
https:

containers from NVIDIA NGC:

ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training

DeepPaviov

DeepPaviov is an open-source
conversational Al library built on
TensorFlow and Keras. DeepPaviov
designed for development of produc

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference

<X

NVIDIA.

NVIDIA

The Machine learning container contains
TensorFlow, PyTorch, jupyterLab, and
other popular ML and data science
frameworks such as scikit-learn, scipy, an...

- Run examples / Jupyter notebooks:
https://github.com/NVIDIA/NVTabular/tree/master/examples

<

NVIDIA.

NVCaffe

NVIDIA Caffe, also known as NVCaffe, is an
NVIDIA-maintained fork of Berkeley Vision

and Learning Center (BVLC) Caffe tuned for
NVIDIA GPUS, particularly in multi-GPU co..

- Getting started documentation:
https://github.com/NVIDIA/NV Tabular#installation

! <ANVIDIA

Clara Train SDK is a domain optimized
developer application framework that
includes APIs for Al-Assisted Annotation,
making any medical viewer Al capable an

<

NVIDIA.

Domain Specific NeM:

pplication

The Domain Specific - NeMo Automatic

Or alternatively
ython’

R0
4 ? Package
N0
> =

performance comparison of ASR models.

. https://anaconda.org/nvidia/nvtabular https://pypi.org/project/nvtabular
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HugeCTR

A Deep Recommender Training Framework

HugeCTR is a highly efficient GPU framework designed
for Click-Through-Rate (CTR) estimating training.

It is fast, very fast:

- Speedup of up to 114x over TensorFlow on
a 40-core CPU node.

- Speedup of up to 8.3x over TensorFlow on
a single NVIDIA V100 GPU.

- Supports GPU accelerated recommender specific
operations, i.e. GPU hash table, fused layers, etc.

- Optimized multi-node functionality, syncing GPUs

CTR = " Of clicks via UCX P2P.
# of impressions

- Easy to use.
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Case Study: MLPerf 0.7 Win

The Fastest on MLPerf RecSys Benchmark

MLPerf DLRM performance
DGX A100 vs 16-CPU cluster

1x

16-CPU cluster ,
(45.04 mins)

13.5x faster

HugeCTR on
DGX-A100 (3.3 mins)

Speedup factor

https://mlperf.org/training-results-0-7

Recommender task (training DLRM on the Criteo 1TB dataset). Bars represent speedup factor compared to a 4 CPU-node cluster.

15

The higher the better. HugeCTR v2.2 running on DGX-A100 with 8x A100 40GB GPU. Intel's CPU submission based on 4 nodes,
each with 4X 3rd Gen Intel® Xeon® Platinum processor (28core, 2.70GHz, pre-production) with 6 UPI for a total of 16 CPUs.

HugeCTR is the key driver behind the recent NVIDIA
MLPerf recommender records.

HugeCTR v2.2 running on DGX-A100 is 13.5x
faster than Intel's 16-CPU cluster submission.

At 3.33 minutes, HugeCTR on DGX-A100 is the
fastest commercially available system on the
MLPerf recommender benchmark.
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Highlighted Features

Model Parallel Embedding + Data Parallel Neural Network

Node 0 Node 1
1 1
| 1 | 1
GPU GPU GPU GPU GPU GPU GPU GPU
0 1 2 3 0 1 2 3

Data Parallelism

O
@
>
o
9
<
o
Q
108

|SPON asuaq
|9PON asuaq
|I9PON asuag
|9PON asuaq
|SPON asuaq
|SPON asuaq
|SPON asuaq

Model Parallelism Sparse Model/Embedding

The full network is divided into dense and sparse models.

The large embedding will be shared between multiple GPUs and multiple
nodes, so any model with any size can be trained with enough GPUs.
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Highlighted Features

Model Parallel Embedding + Data Parallel Neural Network

Node 0 Node 1
1 1
| 1 | 1
GPU GPU GPU GPU GPU GPU GPU GPU
0 1 2 3 0 1 2 3

Data Parallelism

|9POIN 3suaq
|9POIN asuaq
|9POIN 3suaq
|[9POIN asuaq
|9POIN asuaq
[9POIN 3suaq
|9POIN asuaq

O
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)

Model Parallelism Sparse Model/Embedding

The full network is divided into dense and sparse models.

The large embedding will be shared between multiple GPUs and multiple
nodes, so any model with any size can be trained with enough GPUs.

Asynchronous, Multi-threaded Data Pipeline

Batch 0 Copy to
GPU A
Read Copy to .
patch 1

Read Copy to
Batch 2 File GPU

Train

.§

n

Time

CPU Memory GPU Memory

4 Collector\

Model

Datasets

Training

2 )

HugeCTR’s asynchronous and multi-threaded file reader reduces data
loading bottlenecks, by overlapping disk to CPU memory operations,
data transfers from CPU to GPU, and model training.
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Highlighted Features

Multi-Slot Embedding Support

MLP MLP MLP MLP
(GPUO)

% 2 Embedding
slot 0 slot 4

The embedding table can be segmented into multiple slots.

The multi-slot embedding improves the inter-GPU bandwidth
utilization in the two ways:

- Helps reduce the number of effective features within
each slot to a manageable degree when there exist
extremely many features in the dataset.

- The number of transactions across GPUs is reduced,
which facilitates more efficient communication.

The multi-slot embedding is also useful in expressing a linear
model by just setting both the number of slots and the
embedding dimension to 1.

Check out Wide & Deep example for the detailed information.
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Highlighted Features

Multi-Slot Embedding Support

MLP MLP MLP MLP
(GPUO)

% 2 Embedding
slot 0 slot 4

The embedding table can be segmented into multiple slots.

The multi-slot embedding improves the inter-GPU bandwidth
utilization in the two ways:

- Helps reduce the number of effective features within
each slot to a manageable degree when there exist
extremely many features in the dataset.

- The number of transactions across GPUs is reduced,
which facilitates more efficient communication.

The multi-slot embedding is also useful in expressing a linear
model by just setting both the number of slots and the
embedding dimension to 1.

Check out Wide & Deep example for the detailed information.

Hash table Support for Embeddings

Custom embedding layer which includes a high
performant GPU hash table based on RAPIDS cuDF.

- Supports dynamic insertion.

- Sorted based parameter update to reduce memory
footprint.

- Fused reduction for multiple feature fields (slots).

- Up to 35x speedup over concurrent_hash_map from
Intel’s Threading Building Blocks (TBB).

# million pairs / second
higher is better
1400

1200
1000
800
600 578
400 424
200

1256

77 85
12 [ [
insert set get

M Intel TBB ® RAPIDS cuDF
1M key-value pairs; load factor: 0.8

CPU: tbb::concurrent_hash_map on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
GPU: cudf on V100
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Highlighted Features
Model definition in Keras-like APl or JSON

Embedding_1 Embedding_2

Reshape_1 Reshape_2

Network configuration documentation

"layers": [

{
"name": "embedding 1",
"type": "DistributedSlotSparseEmbeddingHash",
"bottom": "wide_ sparse input",

}

{
"name": "embedding 2",
"type": "DistributedSlotSparseEmbeddingHash",
"bottom": "deep sparse _input",

}

{
"name": "concat",

"type": "Concat"”,
"bottom": ["dense_input", "reshape 1"],

}s

https://github.com/NVIDIA/HugeCTR/tree/master/samples
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HugeCTR vs TensorFlow
Wide & Deep Network (WDL)

100
90
80
70
60
50
40
30
20
10

Latency per iteration (ms)

337 340 343 356
- [ [ -

512 1024 2048 4096
Batch size

411 475 WDL, batch size=512, 2X1024 hidden units
- i 0.52
—train_tf
0.5 —val tf
0.48 train_hg
——val hg
o
@ 0.46
el '.!'hl'.l. rll"llll'lﬂ_'r "-ll'.l '|*.""\-l| 'lll' A 1 d I._ ]
0.44 TN IR Y )
(| |||.,ﬂ1..I
|
0.42
8192 16384 0.4
* lower is better o "ﬂ"ﬁ% S E;l—- %ﬁ’%@%@h&ﬂh%%h#@%@%@%mh%@%@%

B Tensorflow-CPU O Tensorflow-GPU

B HugeCTR

GPU: NVIDA Tesla V100 16GB

CPU: Dual 20-core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
Dataset: Criteo (26 categorical features and 13 integer features)
Model: 2x 1024-unit FC layers with ReLU and dropout, emb_dim: 16
Optimizer: Adam for both Linear and DNN models

Iteration

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl
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HugeCTR vs TensorFlow
Deep Cross Network (DCN)

258 264 273 289 363 492 DCN, batch size=512, 2X1024 hidden units
100 | || | | | | | | ||
. 0.52
- 90 :
€ gp —train_tf
< 0.5 — val tf
'E 70 train_hg
© 60 0.48
2 50 o )
— 0.46
L 40 5 w-f “ FIHJ”N “F
= 30 _ el s (R |
> 0.44 Y jragre Y
E 20 .I| -\.'.ﬂlh "'II- I|il I|-I|II.I'I Jlllllllllll!li |I rll|_l_|II Hln'l,l.||'|l'|‘* "ll'
3 10 D.42 'I"Ilfl'llfl"ﬂ.'r I e .-||,|:'.IHI|I
U 1
512 1024 2048 4096 8192 16384 0.4
: . A S TS N S S S TS S S S S S S
Batl:h Slze * |UW‘E|" is better Py F'I::'r t:"_:l-' |bﬁ':l-' cbha-" *"Fh? P;L:"? n?hﬁk h{Eﬁ"? h&?ﬁ' "'Fhr .-EL-'% '_.L-E::‘:r "f'.:'“} J_ﬁ;':r'
B Tensorflow-CPU  OTensorflow-GPU @ HugeCTR Iteration
GPU: NVIDA Tesla V100 16GB https://github.com/NVIDIA/HugeCTR/tree/master/samples/dcn

CPU: Dual 20-core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

Dataset: Criteo (26 categorical features and 13 integer features)

Model: 2x 1024-unit FC layers with ReLU and dropout, emb_dim: 16

Optimizer: Adam for both Linear and DNN models 69 <ZNVIDIA.
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Search containers

3

NVIDIA.

Demonstration of how you can use the
new DALI functional API to accelerate and
scale an image data loading pipeline to
dramatically accelerate deep learning wo.

<ANVIDIA.

NVTabular is a feature engineering and
preprocessing library for tabular data
designed to quickly and easily manipulate
terabyte scale datasets used to train dee.

A

NVIDIA.

NVIDIA L4T is a Linux based software
distribution for the NVIDIA Jetson
embedded computing platform

<

NVIDIA.

riton Infe

Triton Inference Server provides a data
center inference solution optimized for
NVIDIA GPUs. It maximizes inference
utilization and performance on GPUS via

<

NVIDIA.

The NVIDIA HPC SDK is a comprehensive
suite of compilers, libraries and tools
essential to maximizing developer
productivity and the performance and po.

<X

NVIDIA.

NVIDIA's Transfer Learning Toolkit is a
python-based Al training toolkit that allows
developers to train faster and accurate

neural networl

A\ deepvisionai

nograph

Deep Vision Al Inc. applies proprietary
advanced computer vision technalogy to
understand images and video
automatically, turning visual content inta .

<

NVIDIA.

The Smart Parking Detection container
includes the DeepStream application and
the plugins for an example ap,
smart parking solution.

plication of a

NVIDIA TensorRT is a C++ library that
facilitates high-performance inference on
NVIDIA graphics processing units (GPUS).
TensorRT takes a trained network, which

Demonstration of GPU Accelerated
Machine Learning Data Science workflows
using RAPIDS.

https://ngc.nvidia.com

n the popular deep lear...

Getting Started

3

NVIDIA.

DeepStream SDK delivers a complete
streami nalytics toolkit for real-time Al
based video and image understanding and
multi-sensor processing. Deepstream SO.

N

LAT TensorFlow

TensorFlow is an open-source software
library far numerical computation using
data flow graphs. Nodes in the graph
represent mathematical operations, whil..

The Microsoft Cognitive Toolkit, formerly
known as CNTK, is a unified deep-learning
toolkit that describes neural networks as a
series of computational steps via a direct

PyTorch is a GPU accelerated tensor
computational framework with a Python
front end. Functionality can be easily
extended with common Python libraries s.

<

NVIDIA.

Text Classification with BERT and NeMo.
This NeMo application trains text
classification models using single-GPU or
multi-GPU. We log performance metrics a.

cnvrg.io CORE

Community Platform

cnvrg.io CORE

envrg.ia is an Al O, transforming the way
enterprises manage, scale, and accelerate
Al and data science development from
research to production. crvrg.io CORE is

A LAT PyTorct

PyTorch is a GPU accelerated tensor
computational framework with a Python
front end. Functionality can be easily
extended with common Python libraries s.

Caffe2 is a deep-learning framework
designed to easily express all model types
for example, CNN, RNN, and more, in a
friendly python-based AP, and execute t.

Kaldi is an open-source software
framework for speech processing.

<

NVIDIA.

How to deploy pre-trained models from
NGC into an intelligent video analytics (IVA)
pipeline in DeepStream

Sort: Last Modified v

DeepPaviov

DeepPavlov is an open-source
conversational Al library bullt on
TensarFlow and Keras. DeepPaviov
d

zned for development of produc

<X

NVIDIA.

The Machine learning container contains
TensorFlow, PyTorch, JupyterLab, and
other popular ML and data science
frameworks such as scikit-learn, scipy, an...

<

NVIDIA.

NVIDIA Caffe, also known as NVCaffe, is an
NVIDIA-maintained fork of Berkeley Vision
and Learning Center (BVLC) Caffe tuned fo
NVIDIA GPUS, particularly in multi-GPU co..

\‘2 NVIDIA
oy

g1

Clara Train SDK is a domain optimized
developer application framework that
includes APIs for Al-Assisted Annotation,
making any medical viewer Al capable an

<

NVIDIA.

Domain S

SR Application

The Domain Specific - NeMo Automatic
Speech Recognition (ASR) Application
facilitates training, evaluation and
performance comparison of ASR models.

NVIDIA NGC + GitHub

- Pull containers from NVIDIA NGC:

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training

https.//ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference

- Run examples / Jupyter notebooks:
https://github.com/NVIDIA/HugeCTR/tree/master/notebooks

https://github.com/NVIDIA/HugeCTR/tree/master/samples

- Getting started documentation:
https://github.com/NVIDIA/HugeCTR#getting-started
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Example: Wide & Deep

Training with TensorFlow

Model Description: Wide and Deep Speedup with Automatic Mixed Precision

. Combines the memorization Of the W]de part and FP16 vs FP32 Training with Outbrain Dataset on V100-32GB, BS = 128K , Accuracy: 0.67

generalization of the Deep part of the network.
o AMP and Horovod Multi-GPU o 718'820659,533

602,027

W FP16 W FP32

What’s New: < 400,000
o The original model had 3 layers of 1024, 512, and g 242'3321681 .
256 neurons. £ 200000 ’
o Our model consists of 5 layers each of 1024
neurons. 0 1GPU 4GPU 8 GPU

Training Precision
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Example: DLRM

Training with Pytorch

Model Description:

o Provides state-of-art results while enables GPUs
to work efficiently with production-scale data.

o Efficient GPU processing of categorical features
using embeddings.

o Continuous features are efficiently processed with
a bottom multilayer perceptron.

What’s New:
o 3x speedup with Automatic Mixed Precision.

DLRM throughput shows 3X speedup with Automatic Mixed Precision
FP16 vs FP32 Training with Criteo 1TB Dataset on 1 V100-32GB, BS = 32768, Accuracy: 0.80362

2,000,000

1,500,000

1,000,000

500,000

Throughput (items/sec)

FP16 FP32

Training Precision
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Triton Inference




NVIDIA Triton

Production-Ready Inference Server

Q
c o
S0
= O

<

Inference

NVIDIA A100

NVIDIA A100

NVIDIA T4
NVIDIA T4
NVIDIA T4
NVIDIA T4

Maximize GPUs real-time inference performance.

Quickly deploy and manage multiple models per
GPU per node.

Easily scale to heterogeneous GPUs and multi-
GPU nodes.

Integrates with orchestration systems and auto-
scalers via latency and health metrics.

Now open source for thorough customization and

integration.
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Concurrent Model Execution

Multiple models (or multiple instances of same
model) may execute on GPU simultaneously.

CPU Model Inference Execution

Framework native models can execute inference
requests on the CPU.

Metrics
Utilization, count, memory, and latency.

Custom Backend

Custom backend allows the user more flexibility
by providing their own implementation of an
execution engine through the use of a shared
library.

Model Ensemble

Pipeline of one or more models, connecting
input and output tensors between those models.

NVIDIA Triton

Key Features

Dynamic Batching

Inference requests can be batched up by the
inference server to 1) the model-allowed
maximum or 2) the user-defined latency SLA.

Multiple Model Format Support
- PyTorch JIT (.pt)
- TensorFlow GraphDef/SavedModel
- TensorFlow and TensorRT GraphDef
- ONNX graph (ONNX Runtime)
- TensorRT Plans
- Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making
it more portable to multiple OSes and
removing the build dependency on Docker.

Streaming API

Built-in support for audio streaming input e.g.
for speech recognition.

€ ONNX

+
Q Q ¥ Microsott
Caffe2 Chainer CNTK

‘xnet PYTHORCH
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DLRM

NVIDIA Triton

Path to Production

W&D

HugeCTR

TensorFlow
Saved Model

DCN

DeepFM

T

TensorFlow

Lw

/

NCF

VAE-CF

O PyTorch

€) ONNX

TorchScript

7
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NVIDIA A100

NVIDIA T4

NVIDIA V100

NVIDIA P4
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Example: Wide & Deep

Inference in Triton with TensorRT

NVIDIA T4 GPU vs Xeon Platinum 8275CL NVIDIA T4 GPU vs Xeon Platinum 8275CL
Wide & Deep Inference, Latency-Optimized Wide & Deep Inference, Throughput-Optimized
60+ 20001
i [ Local CPU Inference [ B Local CPU Inference

504 B 1xT4 Connected by 1Gbps Network 1800 B 1xT4 Connected by 1Gbps Network

[ 1xT4 Connected by 10Gbps Network E [ [ 1xT4 Connected by 10Gbps Network
c 1600
m S :
£ o 40+ Q 14004
o B WO -
o 2 2 ¥f
! 0 & 12004
— 30' 5 O -
> 5 gf 1000
S 2 — @ X
4 o 20- = -& oo
— Q= b
_C =
o 600—-
10- 3 :
— 400=
£
0 - 2004
64 256 1024 4096 o o

64 256 1024 4096
Items per request ltems per request

https://github.com/NVIDIA/HugeCTR/tree/masterhttps://devblogs.nvidia.com/accelerating-wide-deep-recommender-inference-on-gpus/samples/wdl

CPU: FP32; AWS c5d.24xlarge, single socket
GPU: NVIDA T4, mixed precision; AWS g4dn.16xlarge 80 @A NVIDIA.


https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl
https://devblogs.nvidia.com/accelerating-wide-deep-recommender-inference-on-gpus/
https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

Example: DLRM

Inference in Triton with TensorRT

10001 —— V100 FP16 | | " Latency vs Throughput at Various Number of Concurrent Client Requests
_ —o— V100 FP32 / TorchScript FP16 model, 1 x V100-32G
E 100, — PV -
9 //'/‘ = Samples/Second @ Client Recv M Server Compute W Server Queue M Network+Server Send/Recv B Client Send
()
g 10 _—
. " 12.5 02470 1/500,000
1y @ . : | | /ﬁﬁf*o
1 4 16 64 256 1024 4096 16384 65536 @ 100 1118890 1,169,6]0 1,395,210
Batch size e ' - 1,318,710 )
= | ‘ = 1,191,120 _?é
Y 1084 —e— V100 FP16 /——»—"f“*v— m— g 1,123,530 1,000,000 @
0 —e— V100 FP32 ) 7.5 o
é 5| —e— CPU / —— 5 . 3
51 | — T - g
F | S <
g. 104 = "c'u‘ 23! =
] cg 6081870 500,000 -g
o
£ 10° = 4791642 o
- e =
1 4 16 64 256 1024 4096 16384 65536 4 - =
Batch size 2 SRS
0_20_—-‘— GPU/dPU speedup : : 0
3 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
§15 / T
2 10 / Client Request Concurrency Count
O
2 j
z ° ~
5 - L e Platform: 1x V100-32G.
1 4 16 64 256 1024 4096 16384 65536 e Release: 20.06-py3.
Batch size e Throughput is measured in recommendations/seconds.
Optimal batch size for running inference is 65536. e Latency is measured in milliseconds.
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Recommender Systems Demystified

RecSys are everywhere.
There are multiple techniques.
Collaborative Filtering + Content-Based Filtering.

Deep Learning Based Recommender Systems: Wide & Deep.

NVTabular + HugeCTR + Optimised Examples + Triton Inference Server.

Finally, the game cover in the third slide corresponds to Simon the Sorcerer.

NVIDIA.
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