
RECOMMENDER SYSTEMS
DEMYSTIFIED

Matthieu Gasse-Hellio, Partner Business Manager at NVIDIA

Miguel Martínez, Sr. Data Scientist at NVIDIA

Partner Business Manager, Southern Europe

A gentle introduction to RecSys

– RecSys techniques

∙ Collaborative filtering

∙ Content-based filtering

– Deep & Wide architecture

NVIDIA Merlin framework

– NVTabular

– HugeCTR

– Reference implementations

– Triton Inference Server

Recommender Systems

(RecSys)

4

Today’s talk is about

Everything you wanted to know about RecSys

but were afraid to ask

5
https://www.rinapiccolo.com/

We will also learn

How to do this … … as fast as possible …

Cartoon by Rina Piccolo

… with the help of …

NVIDIA

MERLIN

https://www.rinapiccolo.com/

6

RecSys are Everywhere

The usual suspects

People you may know Recommended for you

Customer who bought this
item also bought

New releases for youOther movies you may enjoy

Jobs you may be interested in

7

Also in your non-digital life!

RecSys are Everywhere

http://scottandbenorbenandscott.com/#/signs-of-the-times

http://scottandbenorbenandscott.com/#/signs-of-the-times

8

Recommendations based on TV shows:

• I have liked before.

• I have watched before.

My user experience

Recommender Systems

9

Recommendations based on TV shows:

• I have liked before.

• I have watched before.

My user experience

Recommender Systems

… and it works quite well:

• TV shows I have already
watched and liked.

: 33%

10

Recommendations based on TV shows:

• I have liked before.

• I have watched before.

My user experience

Recommender Systems

… and it works quite well:

• TV shows I have already
watched and liked.

• TV shows I haven’t
watched yet, but I’d
like to watch.

: 33%

: 50%

11

Recommendations based on TV shows:

• I have liked before.

• I have watched before.

My user experience

Recommender Systems

… and it works quite well:

• TV shows I have already
watched and liked.

• TV shows I haven’t
watched yet, but I’d
like to watch.

• TV shows I am not sure
I’d like to watch.

: 33%

: 50%

: 17%

RecSys Techniques

13

Multiple techniques mostly grouped in two categories

Collaborative Filtering

similar users

watched by both users

watched
by her

recommended
to him

Content-based Filtering

Diagrams by Emma Grimaldi.

14

Multiple techniques mostly grouped in two categories

Collaborative Filtering

watched by both users

similar users

watched
by her

recommended
to him

Content-based Filtering

Diagrams by Emma Grimaldi.

15

Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

similar
movies

watched by user

recommended
to him

watched by both users

similar users

watched
by her

recommended
to him

Diagrams by Emma Grimaldi.

16

Multiple techniques mostly grouped in two categories

Collaborative Filtering Content-based Filtering

watched by both users

similar users

watched
by her

recommended
to him

Diagrams by Emma Grimaldi.

similar
movies

watched by user

recommended
to him

Genres:
– Comedy
– Romance

Cast:
– Tom Hanks
– Meg Ryan

Genres:
– Comedy
– Romance

Cast:
– Tom Hanks
– Meg Ryan

Collaborative Filtering

18

Collaborative Filtering

A bipartite graph, or bigraph, is a

graph whose nodes can be divided

into two disjoint and independent

sets, and such that every edge

connects a node in one set to one

node in the other set.

A graph is a set of objects called

nodes or vertices that are connected

together.

The connections between the nodes

are known as edges or links.

A graph-based approach

Jaccard Similarity vs Overlap Coefficient

19

Collaborative Filtering
A graph-based approach

Jaccard Similarity vs Overlap Coefficient

20

Collaborative Filtering
A graph-based approach

Jaccard Similarity vs Overlap Coefficient

21

Collaborative Filtering

How could I teach

recommend movies?

a computer to

A graph-based approach

Jaccard Similarity vs Overlap Coefficient

22

Collaborative Filtering

Jaccard Similarity

js(A,B)
|A⋂ B|

|A⋃ B|
=

UnionIntersection

Overlap Coefficient

oc(A,B)
|A⋂ B|

min(|A|,|B|)
=

Intersection

A graph-based approach

Jaccard Similarity vs Overlap Coefficient

23

Collaborative Filtering

Jaccard Similarity

js(A,B)
|A⋂ B|

|A⋃ B|
=

UnionIntersection

Overlap Coefficient

oc(A,B)
|A⋂ B|

min(|A|,|B|)
=

Intersection

A graph-based approach

Jaccard Similarity vs Overlap Coefficient

24

Collaborative Filtering

http://syskall.com/kmeans.js

A clustering approach

k-Means + KNN

We will group the items we would like to recommend

in different clusters.

Unsupervised machine learning task:

/ Finding groups in a features space.

There are multiple clustering algorithms:

/ k-Means, DBSCAN, Gaussian Mixture Model…

k-Means clustering:

/ The number of clusters is a hyperparameter.

/ It is a non-deterministic algorithm:

– Initial means are randomly generated.

k-Means (k=3)

k-Means (k=4)

http://syskall.com/kmeans.js

25

Collaborative Filtering

k-Means (k=10)

movie_id title year genre budget country

0000 The Lion King 2019 Adventure $260,000,000 USA

0001 Toy Story 1995 Comedy $30,000,000 USA

··· ··· ··· ··· ··· ···

3098 Seven Samuray 1954 Action $1,129,178 Japan

3099 Good Will Hunting 1997 Drama $10,000,000 USA

A clustering approach

k-Means + KNN

26

Collaborative Filtering

00000 00001 00002 00003 ··· 21345 21346 21347 21348

0000 0 0 0 0 ··· 0 9 0 0

0001 0 0 0 4 ··· 0 0 0 0

0002 0 0 0 0 ··· 7 0 0 0

··· ··· ··· ··· ··· ··· ··· ··· ··· ···

3096 0 0 0 0 ··· 0 0 0 0

3097 0 0 0 0 ··· 0 8 0 4

3098 6 0 0 0 ··· 0 0 0 0

3099 0 0 0 0 ··· 0 0 0 0

user_id

m
o

vi
e

_i
d

user
ratings

user_id user_name

00000 Camilla Manning

00001 Eloise Banks

··· ···

21347 Nadia Reynolds

21348 Stephen Daniel

movie_id title ··· cluster

0000 The Lion King ··· 3

0001 Toy Story ··· 3

··· ··· ··· ···

3098 Seven Samuray ··· 1

3099 Good Will Hunting ··· 7

user_id movie_id rating

00000 2137 8

00000 1624 3

··· ··· ···

21348 3097 9

21348 1943 6

A clustering approach

k-Means + KNN

27

Collaborative Filtering
A clustering approach

k-Means + KNN

k-Nearest Neighbours (k-NN) finds a predefined number of

training samples closest in distance to a point, and predicts

its label from these.

/ The ‘euclidean’ metric is unhelpful in high dimensions.

/ The user ratings matrix is sparse → use ‘cosine’ metric.

New movie classification

Content-based Filtering

29

Content-based Filtering
A sweet example

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms ✓ ✓ ✓ ✗ ✗ ✗

Skittles ✗ ✓ ✓ ✓ ✗ ✗

Snickers ✓ ✗ ✗ ✗ ✓ ✗

Laffy
Taffy

✗ ✗ ✓ ✓ ✗ ✓

Caramel
Chew

✗ ✗ ✗ ✗ ✓ ✓

30

Content-based Filtering
A sweet example

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms ✓ ✓ ✓ ✗ ✗ ✗

Skittles ✗ ✓ ✓ ✓ ✗ ✗

Snickers ✓ ✗ ✗ ✗ ✓ ✗

Laffy
Taffy

✗ ✗ ✓ ✓ ✗ ✓

Caramel
Chew

✗ ✗ ✗ ✗ ✓ ✓

Lara's
Rating

3

-

5

-

-

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms 3 3 3 0 0 0

Skittles - - - - - -

Snickers 5 0 0 0 5 0

Laffy
Taffy

- - - - - -

Caramel
Chew

- - - - - -

Total: 8 3 3 0 5 0
Σ = 19

31

Content-based Filtering

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms ✓ ✓ ✓ ✗ ✗ ✗

Skittles ✗ ✓ ✓ ✓ ✗ ✗

Snickers ✓ ✗ ✗ ✗ ✓ ✗

Laffy
Taffy

✗ ✗ ✓ ✓ ✗ ✓

Caramel
Chew

✗ ✗ ✗ ✗ ✓ ✓

Lara's
Rating

3

-

5

-

-

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms 3 3 3 0 0 0

Skittles - - - - - -

Snickers 5 0 0 0 5 0

Laffy
Taffy

- - - - - -

Caramel
Chew

- - - - - -

Total: 8 3 3 0 5 0
Σ = 19

Candy Chocolate Round Colorful Fruity Caramel Chewy

Total: 0.42 0.16 0.16 0 0.26 0

Divide by Total Sum

÷19

A sweet example

32

Content-based Filtering

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms ✓ ✓ ✓ ✗ ✗ ✗

Skittles ✗ ✓ ✓ ✓ ✗ ✗

Snickers ✓ ✗ ✗ ✗ ✓ ✗

Laffy
Taffy

✗ ✗ ✓ ✓ ✗ ✓

Caramel
Chew

✗ ✗ ✗ ✗ ✓ ✓

Lara's
Rating

3

-

5

-

-

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms 3 3 3 0 0 0

Skittles - - - - - -

Snickers 5 0 0 0 5 0

Laffy
Taffy

- - - - - -

Caramel
Chew

- - - - - -

Total: 8 3 3 0 5 0

Candy Chocolate Round Colorful Fruity Caramel Chewy

Total: 0.42 0.16 0.16 0 0.26 0

Candy Chocolate Round Colorful Fruity Caramel Chewy

M&Ms - - - - - -

Skittles 0 0.16 0.16 0 0 0

Snickers - - - - - -

Laffy
Taffy

0 0 0.16 0 0 0

Caramel
Chew

0 0 0 0 0.26 0

Lara’s
Prediction

-

0.32

-

0.16

0.26

Divide by Total Sum

÷19

Σ = 19

A sweet example

Collaborative Filtering
vs

Content-base Filtering

34

Collaborative Filtering
A few things to consider

#
 r

a
ti

n
g
s

items

Long tail ratings distribution

Popularity bias:

/ Popular items are more likely to be recommended.

Cold start issues:

/ New community:

– Refers to the system startup.

– No data available the recommender can rely on.

/ New user:

– The system cannot rely on the user’s past

interactions to provide any recommendation.

/ New item:

– New items added to the catalogue have either

none or very little interactions.

35

Content-base Filtering
A few things to consider

New community issue

Popularity bias:

/ Popular items are more likely to be recommended.

Cold start issues:

/ New community:

– Refers to the system startup.

– No data available the recommender can rely on.

/ New user:

– The system cannot rely on the user’s past

interactions to provide any recommendation.

/ New item:

– New items added to the catalogue have either

none or very little interactions.

36

Collaborative Filtering vs Content-based Filtering

Diagrams by Emma Grimaldi.

No need to choose

Feature Collaborative Filtering Content-based Filtering

No Human

Feature Engineering
✓ ✗

Good at Expanding

User's Interest
✓ ✗

Can Recommend

Highly Specific Items
✗ ✓

Can Recommend

New Items
✗ ✓

Solution: hybrid approach combining both techniques.

Deep Learning Based
Recommender Systems

38

Wide & Deep Neural Architecture
Learning how not to forget

Input layer Hidden layers

Embeddings
layer

Output layer

Fully connected
layers

Features
memorisation

Features
Generalisation

W
id

e
D

e
e
p

39

Wide & Deep Neural Usage Examples
A widely and deeply used architecture

Facebook DLRM

Dense features Sparse features

https://arxiv.org/pdf/1906.00091.pdfhttps://arxiv.org/abs/1606.07792

Google Wide & Deep

Sparse features

https://arxiv.org/abs/1708.05031

Neural Collaborative Filtering

User (u) Item (i)

https://arxiv.org/pdf/1906.00091.pdf
https://arxiv.org/abs/1606.07792
https://arxiv.org/abs/1708.05031

Embeddings,
Embeddings,
Embeddings.

41

Huge Number of Customers and Products
Someone said embeddings?

user_id

200650946

447945298

473849537

…

329521575

109 >>> 103

user_id_1 user_id_2 user_id_3 … user_id_109

1 0 0 … 0

0 1 0 … 0

0 0 1 … 0

… … … … …

0 0 0 … 1

feat_1 feat_2 feat_3 … feat_103

0.03244 0.20043 0.15545 … 0.97712

0.61397 0.65557 0.15097 … 0.74054

0.84247 0.35971 0.68802 … 0.97123

… … … … …

0.00279 0.57935 0.15785 … 0.89202

➔

➔

➔

➔

➔

➔

Smaller dense embedding matrixOne-hot encoding ➔ large sparse matrix

➔

➔

➔

109 users

NVIDIA Merlin

43

Recommendation Pipelines

Experimentation

– Feature engineering

– Data Pre-processing

– Model(s) training

Monthly

User
interaction TBs to PBs

Improved
accuracy?

NoYes

Train data

Train data

GBs to TBs

Model(s)

Production Inference

Real-time

Recommender System

Candidate generation

Item
Inventory

O(106)

User
Preferences

O(103)

Top 10

Production Re-training

Data Pre-processing

Feature engineering

Model(s) training

Weekly / Daily

Production Re-training

– Feature engineering

– Data Pre-processing

– Model(s) training

Weekly / Daily

Example

44

Recommendation Pipelines

Data (ETL)

• Huge data sets:
TBs, PBs or more.

• Complex data
preprocessing and
feature
engineering
pipelines.

• Many iterations
required.

Feature

exploration
Data loading

• Data loading can
be > 50% of total
training time.

• Tabular data
loading scales
poorly with an
item-by-item
approach.

Challenges

45

Recommendation Pipelines

Data (ETL)

• Huge data sets:
TBs, PBs or more.

• Complex data
preprocessing and
feature
engineering
pipelines.

• Many iterations
required.

Feature

exploration
Data loading

Training

• Large embedding
tables exceed
single GPU
memory.

• Sub-optimal
lookups ops
implementation.

• Hard to achieve
high scaling
efficiency with
both model and
data parallelism.

• Longer iteration
cycles reduce the
ability to reach
higher accuracies
quickly.

Huge embedding

tables

Performance &

Accuracy

• Data loading can
be > 50% of total
training time.

• Tabular data
loading scales
poorly with an
item-by-item
approach.

Challenges

46

Recommendation Pipelines

Data (ETL)

• Huge data sets:
TBs, PBs or more.

• Complex data
preprocessing and
feature
engineering
pipelines.

• Many iterations
required.

Feature

exploration
Data loading

Training

• Large embedding
tables exceed
single GPU
memory.

• Sub-optimal
lookups ops
implementation.

• Hard to achieve
high scaling
efficiency with
both model and
data parallelism.

• Longer iteration
cycles reduce the
ability to reach
higher accuracies
quickly.

Huge embedding

tables

Performance &

Accuracy

• Data loading can
be > 50% of total
training time.

• Tabular data
loading scales
poorly with an
item-by-item
approach.

Inference

• Difficult to have
high throughput
and low latency
when ranking a
huge number of
items.

Throughput &

Latency

Challenges

47

NVIDIA Merlin

NVTabular
What it is:

Feature engineering and preprocessing library designed to

quickly and easily manipulate terabytes of tabular data.

What it’s capable of:

• Scale – No limit on dataset size (not bound by GPU or CPU

memory).

• Speed – GPU acceleration, 10x speedup compared to CPU,

eliminate input bottleneck.

• Usability - Higher level abstraction, recommender systems

oriented, fewer API calls are required to accomplish the same

processing pipeline.

• Interoperability with PyTorch, TensorFlow, and HugeCTR.

ETL – Extract, Transform, Load

DATA (ETL)

48

NVIDIA Merlin
Training (1 of 2)

HugeCTR
What it is:

Highly efficient C++ GPU framework and reference design

dedicated for recommendation workload training.

What it’s capable of:

• Model and Data parallelism.

• Scale embedding across multiple GPUs and multiple nodes.

• Designed for distributed training with model-parallel

embedding tables and data-parallel neural networks.

• Supports a range of model architectures:

– DCN,

– DeepFM,

– DLRM,

– W&D.

49

Reference Implementations
What it is:

Open source reference implementations for popular DL

recommender models in TensorFlow and PyTorch.

What it’s capable of:

• State-of-the-art accuracy on public datasets.

• Up to 67x acceleration compared to CPU implementation.

• Supports a range of model architectures:

– DLRM (PyTorch),

– NCF (TensorFlow, PyTorch),

– VAE-CF (TensorFlow),

– W&D (TensorFlow).

NVIDIA Merlin
Training (2 of 2)

Example: DLRM architecture

50

NVIDIA Merlin
Inference

TensorRT and Triton
What it is:

TensorRT is an SDK for high performance DL inference.

Triton Server is a GPU-optimized inferencing solution.

What it’s capable of:

• Maximizes GPU utilization.

• Maximizes throughput at the desired latency.

• For instance, W&D TensorRT Inference pipeline, compared to

an equivalent CPU solution, provides:

– Up to 18x reduction in latency,

– Up to 17.6x improvement in throughput.

51

NVIDIA Merlin

Data (ETL)

A feature engineering and preprocessing
library designed to quickly and easily
manipulate petabytes of tabular data.

Scales Easily: No limit on dataset size (not
bound by CPU or GPU memory).

GPU-accelerated, eliminating CPU
bottlenecks.

Dataloader acceleration and interoperable
with PyTorch, Tensorflow, and HugeCTR.

NVTabular

Training Inference

A highly efficient C++ GPU framework and
reference design dedicated for
recommendation workload training.

Supports multiple model architectures:

• DCN

• DeepFM

• DLRM

• W&D

Designed for distributed training.

HugeCTR

Get started with open source reference
implementations and achieve state-of-the-
art accuracy on public datasets.

Supports multiple model architectures:

• DLRM (PyTorch)

• NCF (TensorFlow, PyTorch)

• VAE-CF (TensorFlow)

• W&D (TensorFlow)

Up to 67x acceleration, compared to CPU-
based implementations.

Reference Implementations

Take advantage of TensorRT and Triton to
run inference efficiently on GPUs by
maximizing throughput with the right
combination of latency and GPU utilization.

Compare 10x the number of candidates at
the same SLA cost for less.

Acceleration example for Wide & Deep:

• 18x reduction in latency,

• 17x improvement in throughput,

compared to an equivalent CPU solution.

TensorRT and Triton

Components Summary

ETL – Extract, Transform, Load

52

NVIDIA Merlin

Data (ETL) Training Inference

Magnum IO

User Query

O(10)

RecommendationCANDIDATES

GENERATION

USER EMBEDDINGS

O(Billions)

O(1000)

ITEM EMBEDDINGS

HugeCTRNVTabular

RAPIDS

Magnum IO

cuDNN Triton Inference Server

TensorRT

RANKING

Data lake

100’s PB

Deep Recommender Application Framework

NVTabular

54

GPU-Accelerated ETL
The average data scientist spends up to 80% of their

time in ETL, as opposed to training models

55

Built on top of

CPU version GPU-Accelerated
G

P
U

 M
e
m

o
ry

E
T
L

V
iz

M
o
d
e
l Tra

in
in

g

D
a
sk

cuGraph

Graph Analytics

Pytorch, MxNext,

TensorFlow

Deep Learning

cuML

Machine Learning

cuDF

Analytics

pyViz, Plotly,

cuXfilter

Visualization

E
T
L

V
iz

M
o
d
e
l Tra

in
in

g

C
P
U

 M
e
m

o
ry

D
a
sk

Matplotlib, Plotly

Visualization

NetworkX

Graph Analytics

Pytorch, MxNext,

TensorFlow

Deep Learning

Scikit-Learn

Machine Learning

Pandas

Analytics

www.rapids.ai

http://www.rapids.ai/

56

Case Study: 1TB Ads Dataset

https://github.com/NVIDIA/NVTabular/blob/master/examples/criteo-example.ipynb

L
e
n
g
th

 i
n
 m

in
u
te

s,
 l
o
g
 s

c
a
le

.

7920

180

12

2880

60

30

1

10

100

1000

10000

Numpy CPU ETL
+

CPU Training

Optimised Spark CPU ETL
+

PyTorch GPU Training

NVTabular GPU ETL
+

HugeCTR GPU Training

ETL Training

CPU: AWS r5d.24xl, 96 cores, 768 GB RAM

GPU: 1 x NVIDIA V100 32GB

ETL 660x faster. Training 96x faster.

https://github.com/NVIDIA/NVTabular/blob/master/examples/criteo-example.ipynb

57

NVTabular Key Features

– Focused on recommendation use cases. It requires

fewer API calls to accomplish the same tasks.

– GPU-accelerated, eliminating CPU bottlenecks.

– Out-of-core execution. No GPU memory limits and

reduced I/O through lazy execution.

– Pytorch, TensorFlow and HugeCTR compatible.

– Triton Inference Server support.

Dataset size limitation Unlimited CPU Memory

Code complexity Simple Moderate

Lines of code 10 - 20 100 - 1000

Flexibility Domain specific General

Data loading Transforms Yes No

Inference Transforms Yes No

NVTabular

Faster and Easier GPU-based ETL

58

NVTabular vs Pandas code

Add feature engineering and pre-processing ops to workflow
proc.add_cont_feature([nvt.ops.ZeroFill(), nvt.ops.LogOp()])
proc.add_cont_preprocess(nvt.ops.Normalize())
proc.add_cat_preprocess(nvt.ops.Categorify(use_frequency=True, freq_threshold=15))

Initialise workflow
cat_names = ["C" + str(x) for x in range(1, 27)] # Specify categorical feature names
cont_names = ["I" + str(x) for x in range(1, 14)] # Specify continuous feature names
label_name = ["label"] # Specify target feature

proc = nvt.Workflow(cat_names=cat_names, cont_names=cont_names, label_name=label_name)

import glob
import nvtabular as nvt

Create datasets from input files
train_files = glob.glob("./dataset/train/*.parquet")
valid_files = glob.glob("./dataset/valid/*.parquet")

train_ds = nvt.Dataset(train_files, gpu_memory_frac=0.1)
valid_ds = nvt.Dataset(valid_files, gpu_memory_frac=0.1)

Compute statistics, transform data, and export to disk
proc.apply(train_dataset, shuffle=True, output_path="./processed_data/train", num_out_files=len(train_files))
proc.apply(valid_dataset, shuffle=False, output_path="./processed_data/valid", num_out_files=len(valid_files))

Initialise workflow

specifying categorical,

and continuous data.

Zero fill any nulls, log

transform and normalise

continuous variables.

Encode categorical data.

Import libraries.

Create training and

validation datasets.

Apply the operations,

creating new shuffled

training and validation

datasets.

https://github.com/facebookresearch/dlrm/blob/master/data_utils.pyEquivalent Pandas/Numpy code:

100x fewer lines of code required

https://github.com/facebookresearch/dlrm/blob/master/data_utils.py

59

Getting Started
NVIDIA NGC + GitHub

– Pull containers from NVIDIA NGC:

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference

– Run examples / Jupyter notebooks:

https://github.com/NVIDIA/NVTabular/tree/master/examples

– Getting started documentation:

https://github.com/NVIDIA/NVTabular#installation

https://ngc.nvidia.com

https://anaconda.org/nvidia/nvtabular https://pypi.org/project/nvtabular

Or alternatively

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training
https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference
https://github.com/NVIDIA/NVTabular/tree/master/examples
https://github.com/NVIDIA/NVTabular#installation
https://ngc.nvidia.com/
https://anaconda.org/nvidia/nvtabular
https://pypi.org/project/nvtabular

HugeCTR

61

HugeCTR

CTR
of clicks

of impressions
=

Clicks

Impressions

HugeCTR is a highly efficient GPU framework designed

for Click-Through-Rate (CTR) estimating training.

– It is fast, very fast:

• Speedup of up to 114x over TensorFlow on

a 40-core CPU node.

• Speedup of up to 8.3x over TensorFlow on

a single NVIDIA V100 GPU.

– Supports GPU accelerated recommender specific

operations, i.e. GPU hash table, fused layers, etc.

– Optimized multi-node functionality, syncing GPUs

via UCX P2P.

– Easy to use.

A Deep Recommender Training Framework

62

Case Study: MLPerf 0.7 Win

Recommender task (training DLRM on the Criteo 1TB dataset). Bars represent speedup factor compared to a 4 CPU-node cluster.

The higher the better. HugeCTR v2.2 running on DGX-A100 with 8x A100 40GB GPU. Intel's CPU submission based on 4 nodes,

each with 4X 3rd Gen Intel® Xeon® Platinum processor (28core, 2.70GHz, pre-production) with 6 UPI for a total of 16 CPUs.

HugeCTR is the key driver behind the recent NVIDIA

MLPerf recommender records.

– HugeCTR v2.2 running on DGX-A100 is 13.5x

faster than Intel's 16-CPU cluster submission.

– At 3.33 minutes, HugeCTR on DGX-A100 is the

fastest commercially available system on the

MLPerf recommender benchmark.

https://mlperf.org/training-results-0-7

MLPerf DLRM performance
DGX A100 vs 16-CPU cluster

16-CPU cluster

HugeCTR on

DGX-A100

0

Speedup factor

13.5x faster
(3.3 mins)

1x
(45.04 mins)

5 10 15

The Fastest on MLPerf RecSys Benchmark

https://mlperf.org/training-results-0-7

63

Highlighted Features

Data Parallelism

Model Parallelism

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e

n
s
e

 M
o

d
e

l

Sparse Model/Embedding

GPU

0

GPU

1

GPU

2

GPU

3

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

GPU

0

GPU

1

GPU

2

GPU

3

Node 0 Node 1

The full network is divided into dense and sparse models.

The large embedding will be shared between multiple GPUs and multiple

nodes, so any model with any size can be trained with enough GPUs.

Model Parallel Embedding + Data Parallel Neural Network

64

Highlighted Features

Data Parallelism

Model Parallelism

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e

n
s
e

 M
o

d
e

l

Sparse Model/Embedding

GPU

0

GPU

1

GPU

2

GPU

3

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

D
e
n
s
e
 M

o
d
e

l

GPU

0

GPU

1

GPU

2

GPU

3

Node 0 Node 1

The full network is divided into dense and sparse models.

The large embedding will be shared between multiple GPUs and multiple

nodes, so any model with any size can be trained with enough GPUs.

Model Parallel Embedding + Data Parallel Neural Network

HugeCTR’s asynchronous and multi-threaded file reader reduces data

loading bottlenecks, by overlapping disk to CPU memory operations,

data transfers from CPU to GPU, and model training.

CPU Memory GPU Memory

Datasets

Worker

Worker

Worker

Worker

Collector

Model

Training

Batch 0

Batch 1

Batch 2

Time

Read

File
Copy to

GPU
Train

Read

File

Copy to

GPU
Train

Read

File

Copy to

GPU
Train

Asynchronous, Multi-threaded Data Pipeline

65

The embedding table can be segmented into multiple slots.

The multi-slot embedding improves the inter-GPU bandwidth

utilization in the two ways:

– Helps reduce the number of effective features within

each slot to a manageable degree when there exist

extremely many features in the dataset.

– The number of transactions across GPUs is reduced,

which facilitates more efficient communication.

The multi-slot embedding is also useful in expressing a linear

model by just setting both the number of slots and the

embedding dimension to 1.

Highlighted Features

Multi-Slot Embedding Support

Check out Wide & Deep example for the detailed information.

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

66

Highlighted Features

Hash table Support for Embeddings

Custom embedding layer which includes a high

performant GPU hash table based on RAPIDS cuDF.

– Supports dynamic insertion.

– Sorted based parameter update to reduce memory

footprint.

– Fused reduction for multiple feature fields (slots).

– Up to 35x speedup over concurrent_hash_map from

Intel’s Threading Building Blocks (TBB).

1M key-value pairs; load factor: 0.8

CPU: tbb::concurrent_hash_map on Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz

GPU: cudf on V100

12
77 85

424

578

1256

0

200

400

600

800

1000

1200

1400

insert set get

million pairs / second
higher is better

Intel TBB RAPIDS cuDF

Multi-Slot Embedding Support

The embedding table can be segmented into multiple slots.

The multi-slot embedding improves the inter-GPU bandwidth

utilization in the two ways:

– Helps reduce the number of effective features within

each slot to a manageable degree when there exist

extremely many features in the dataset.

– The number of transactions across GPUs is reduced,

which facilitates more efficient communication.

The multi-slot embedding is also useful in expressing a linear

model by just setting both the number of slots and the

embedding dimension to 1.

Check out Wide & Deep example for the detailed information.

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

67

Highlighted Features

Network configuration documentation

Dense Input Sparse Input

Embedding_2Embedding_1

Reshape_2Reshape_1

Concat

FC

ReLU

Add

"layers": [
...
{

"name": "embedding_1",
"type": "DistributedSlotSparseEmbeddingHash",
"bottom": "wide_sparse_input",
...

},
{

"name": "embedding_2",
"type": "DistributedSlotSparseEmbeddingHash",
"bottom": "deep_sparse_input",
...

},
{

"name": "concat",
"type": "Concat",
"bottom": ["dense_input", "reshape_1"],
...

},
...

]

https://github.com/NVIDIA/HugeCTR/tree/master/samples

Model definition in Keras-like API or JSON

https://github.com/NVIDIA/HugeCTR/blob/master/docs/hugectr_user_guide.md#network-configurations
https://github.com/NVIDIA/HugeCTR/tree/master/samples

68

HugeCTR vs TensorFlow

GPU: NVIDA Tesla V100 16GB
CPU: Dual 20-core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
Dataset: Criteo (26 categorical features and 13 integer features)
Model: 2x 1024-unit FC layers with ReLU and dropout, emb_dim: 16
Optimizer: Adam for both Linear and DNN models

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

Wide & Deep Network (WDL)

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

69

HugeCTR vs TensorFlow

GPU: NVIDA Tesla V100 16GB
CPU: Dual 20-core Intel(R) Xeon(R) CPU E5-2698 v4 @ 2.20GHz
Dataset: Criteo (26 categorical features and 13 integer features)
Model: 2x 1024-unit FC layers with ReLU and dropout, emb_dim: 16
Optimizer: Adam for both Linear and DNN models

https://github.com/NVIDIA/HugeCTR/tree/master/samples/dcn

Deep Cross Network (DCN)

https://github.com/NVIDIA/HugeCTR/tree/master/samples/dcn

70

Getting Started

NVIDIA NGC + GitHub

– Pull containers from NVIDIA NGC:

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference

– Run examples / Jupyter notebooks:

https://github.com/NVIDIA/HugeCTR/tree/master/notebooks

https://github.com/NVIDIA/HugeCTR/tree/master/samples

– Getting started documentation:

https://github.com/NVIDIA/HugeCTR#getting-started

https://ngc.nvidia.com

https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-training
https://ngc.nvidia.com/catalog/containers/nvidia:merlin:merlin-inference
https://github.com/NVIDIA/HugeCTR/tree/master/samples
https://github.com/NVIDIA/HugeCTR/tree/master/samples
https://github.com/NVIDIA/HugeCTR#getting-started
https://ngc.nvidia.com/

Reference
Implementations

72

Deep Learning based Recommender Examples
Improving state-of-the-art models

DeepFMDCN NCF

VAE-CFDLRMW&D

74

Example: Wide & Deep
Training with TensorFlow

Model Description:

● Combines the memorization of the Wide part and

generalization of the Deep part of the network.

● AMP and Horovod Multi-GPU

● Click Through Rate Prediction

What’s New:

● The original model had 3 layers of 1024, 512, and

256 neurons.

● Our model consists of 5 layers each of 1024

neurons.

75

Example: DLRM
Training with Pytorch

Model Description:

● Provides state-of-art results while enables GPUs

to work efficiently with production-scale data.

● Efficient GPU processing of categorical features

using embeddings.

● Continuous features are efficiently processed with

a bottom multilayer perceptron.

What’s New:

● 3x speedup with Automatic Mixed Precision.

Triton Inference
Server

77

NVIDIA Triton
Production-Ready Inference Server

Maximize GPUs real-time inference performance.

Quickly deploy and manage multiple models per

GPU per node.

Easily scale to heterogeneous GPUs and multi-

GPU nodes.

Integrates with orchestration systems and auto-

scalers via latency and health metrics.

Now open source for thorough customization and

integration.

T
ri

to
n

In
fe

re
n
c
e

S
e
rv

e
r NVIDIA A100

NVIDIA A100

T
ri

to
n

In
fe

re
n
c
e

S
e
rv

e
r

NVIDIA T4

NVIDIA T4

NVIDIA T4

NVIDIA T4

78

NVIDIA Triton
Key Features

Concurrent Model Execution
Multiple models (or multiple instances of same

model) may execute on GPU simultaneously.

CPU Model Inference Execution

Framework native models can execute inference

requests on the CPU.

Metrics

Utilization, count, memory, and latency.

Custom Backend

Custom backend allows the user more flexibility

by providing their own implementation of an

execution engine through the use of a shared

library.

Model Ensemble

Pipeline of one or more models, connecting

input and output tensors between those models.

Dynamic Batching

Inference requests can be batched up by the

inference server to 1) the model-allowed

maximum or 2) the user-defined latency SLA.

Multiple Model Format Support
– PyTorch JIT (.pt)

– TensorFlow GraphDef/SavedModel

– TensorFlow and TensorRT GraphDef

– ONNX graph (ONNX Runtime)

– TensorRT Plans

– Caffe2 NetDef (ONNX import path)

CMake build

Build the inference server from source making

it more portable to multiple OSes and

removing the build dependency on Docker.

Streaming API

Built-in support for audio streaming input e.g.

for speech recognition.

79

NVIDIA A100

NVIDIA T4

NVIDIA V100

NVIDIA P4

Tr
it

o
n

In
fe

re
n
c
e

S
e
rv

e
r

HugeCTR
W&D

DCN

DeepFM

NCF

VAE-CF

DLRM

TorchScript

TensorFlow

Saved Model

NVIDIA Triton
Path to Production

80

Example: Wide & Deep
Inference in Triton with TensorRT

https://github.com/NVIDIA/HugeCTR/tree/masterhttps://devblogs.nvidia.com/accelerating-wide-deep-recommender-inference-on-gpus/samples/wdl

NVIDIA T4 GPU vs Xeon Platinum 8275CL

Wide & Deep Inference, Latency-Optimized

Items per request

NVIDIA T4 GPU vs Xeon Platinum 8275CL

Wide & Deep Inference, Throughput-Optimized

Items per request

CPU: FP32; AWS c5d.24xlarge, single socket
GPU: NVIDA T4, mixed precision; AWS g4dn.16xlarge

https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl
https://devblogs.nvidia.com/accelerating-wide-deep-recommender-inference-on-gpus/
https://github.com/NVIDIA/HugeCTR/tree/master/samples/wdl

81

Example: DLRM
Inference in Triton with TensorRT

Optimal batch size for running inference is 65536.

● Platform: 1x V100-32G.

● Release: 20.06-py3.

● Throughput is measured in recommendations/seconds.

● Latency is measured in milliseconds.

Summary

83

RecSys are everywhere.

There are multiple techniques.

Collaborative Filtering + Content-Based Filtering.

Deep Learning Based Recommender Systems: Wide & Deep.

NVTabular + HugeCTR + Optimised Examples + Triton Inference Server.

Finally, the game cover in the third slide corresponds to Simon the Sorcerer.

That’s all folks!

Recommender Systems Demystified
What we have seen today

