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Research lines

- Computational geometry

- Geographic Information Systems (GIS)
- Geometric modeling

- Image processing

- Physical-based simulations

- Characterization of real-world scenes
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World of sensors
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Air quality Agriculture

Generation of huge datasets




Multispectral camera Hyperspectral camera

High-resolution RGB camera Thermal camera



(What is digital twin?

“Un gemelo digital puede definirse como wuna
representacion digital del mundo real que permite
comprobar constantemente su comportamiento, analizarlo y
actuar en consecuencia, tanto de forma inmediata como
prediciendo su comportamiento en el futuro.

En definitiva, un gemelo digital debe gestionar el ciclo de
vida del sistema, monitorizandolo, analizando su
comportamiento y actuando sobre €l de forma inteligente
para mantener o conseguir situaciones de comportamiento
Optimas.”

NVIDIA OMNIVERSE

Conectary disefiar mundos creativos, equipos y
gemelos digitales
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Study cases

Multi-source images

Forest

Urban scenarios




iSIE

T | g . !

Descripcion:
- This cluster provides a compute capacity of 133,632 CUDA cores, provided by Tesla
Volta and RTX Turing cards.
- Main features::
- 1 management node
- 2 computational nodes based on GPUs ( x2 NVIDIA V100)
- 4 computational nodes based on GPU (x7 NVIDIA GeForce RTK 2080Ti)
- For the next investment:

- 1 storage node

- 1 computational node (4 GPUs A100 with NVLINK)
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(What is edge computing?

“El Edge Computing es un paradigma complementario
al computo en la nube. En este, los datos son procesados
por los dispositivos en vez de depender de servidores
centralizados para procesarlos.

Esto tiene ventajas respecto a latencia de respuesta,
seguridad y privacidad. Ademads, permite que
dependamos menos de los pocos proveedores de
soluciones en la nube, que son Amazon, Google, Microsoft
e IBM.

Pero no solo se pueden resolver problemas de privacidad,
también se puede aplicar aprendizaje maquina desde el
dispositivo, permitiendo que solo se rescate Ila
informacion mas relevante, evitando saturar el ancho de

banda de la red.”

Edge Computing
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Edge Computing
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Edge Computing

System on a chip (SoC) DATA CENTER v CLOUD EDGE
L FRAMEWORKS iyl
. o N — o > o
“Un sistema en chip (SoC, del N N R \
inglés system on a chip) describe la 3 QZ NGC
. 7 ?:: <Y Q—-
tendencia cada vez mas frecuente de usar 3 A T
’ . ./ . N ' )
tecnologias de fabricacion que integran N
todos o gran parte de los modulos que <
componen un computador o cualquier W e w9
otro sistema informatico o electronico en SCALE-OUT TRAINING s SERVER RUNNING Al
EGX SERVERS EGX SERVERS

un unico circuito integrado o chip.”

According to market research firm IDC’s “Future of Operations-Edge and
IoT webinar,” the edge computing market will be worth $251 billion by
2025, and is expected to continue growing each year with a compounded
annual growth rate of 16.4 percent. The evolution of Al, IoT and 5G will
continue to catalyze the adoption of edge computing.




System on a chip (SoC)

NVIDIA® Jetson Xavier™ NX lleva el
rendimiento del superordenador a Ia
periferia en un sistema en modulo (SOM) de
pequefio formato. Con hasta 21 TOPS de
computacion acelerada ofrece la potencia
para ejecutar redes neuronales modernas en
paralelo y procesar los datos de multiples
sensores de alta resolucion, un requisito para
sistemas completamente de IA.
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Challenges and motivation

2. ! f
TR o gy 3
_— "

Multi-source image mapping on 3D huge point clouds

Challenges:

- Memory limitation
- Execution time (performance)

- Data paralelization

Solution:

HPC SYSTEM BASED ON GPU-BASED COMPUTING
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Challenges and motivation

Multi-source image mapping on 3D huge point clouds

Motivation for GPU development:
- GPUs are designed for computing these operations
(projections, plane changes, etc.).

- Data parallelism (no interdependency)
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Algorithm: SfM (Structure from Motion) Nube de 40.196.463 puntos

Description:

Searching for minutiae in images and matching
them to each other for the generation of 3D
points in a common reference system.
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Our proposal

Principales caracteristicas:

1 — Out-of-the-core method

2 — Data parallelization on the GPU (CUDA)
3 — Spatial segmentation of 3D models

4 — Mapping and occlusion tasks



Out-of-core GPU method

P1: Edge systems  P2: Portable systems  P3: Remote systems

<

On-site analysis and visualization
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Characterization of real-world scenarios
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Hsieh, C. T. (2012, November). An efficient development of 3D surface Rx (‘Q) Ry (B) Rz ((X) — 1,.31 T3 2 T3 3 O
registration by Point Cloud Library (PCL). In 2012 International Symposium on
Intelligent Signal Processing and Communications Systems (pp. 729-734). IEEE. 0 0 0 1



W e——— e -5~ w;:__'.?::g}z N e ‘f:» - r =
Our method " Characterization of real-world scenarios
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1. Seleccién de puntos visibles desde la posicién de la camara

considerando el FoV.

HFOV
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Our method || Characterization of real-world scenarios
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2. Multispectral image mapping

Level of details (LoDs):

fs e
U s
| :

256x256 128x128 64x64 32x32
LODO LOD1 LOD2 LOD3

Octree:
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Our method Characterization of real-world scenarios

2. Geometric transformation

Local coordinate system World coordinate system

X

Z

Z Y

P=P-(I:-T-R")

World and Local coordinate systems
are now the same
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Our method Characterization of real-world scenarios
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3. Fisheye projection to map each 3D point to its

corresponding pixel.

Fish eye model Polynomial Fisheye Transform

p =0+ P292 + P393 + P494

. el where:
ol (6, D)
4= 2 No cERT
(X, y,2 t) > 6 = —arctan | ——— |; 0¢[0, 1]
: T V4
/- d
oy @
"P) 3D point
Xg C D X Cx
—~ +
Ya E F| | Yo Cy
What is the result?
- 3D point (X, y z) pX
X AT Y2
- Image coordinates [ hbf] = X;}f 2
- distance Ynot VX212
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Our method Characterization of real-world scenarios

4. Occlusion
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Characterization of real-world scenarios
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4. Occlusion

columns
o N e ck-1 ¢k
5
9 117/ 20 16 3

Occlusion

/ / / Zmax

29 33 12 12 18 7 19 1 25 | .30
Zmin
1 19 23
i 9 14

1st section 3D Point cloud N section
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Our method " Characterization of real-world scenarios
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5. GPU-based acceleration using CUDA for mapping and

occlusion test.

GPU
Lock memory Dynamic memory

Block 1 | Block 2
|
ASSiiomRans Run ‘ Stream A Run ‘ Stream B Asynehironous
transfers transfers
GPU < CPU Mapping & Occlusion GPU < CPU

Stream A Stream C Stream B Stream D
1 3 2 4

NVIDIA.
CUDA
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Our method Characterization of real-world scenarios

GPU
Lock memory Dynamic memory

|
Block 1 I Block 2
|

‘ ) A Run | Stream A Run | Stream B A
Asynchronous Asynchronous
transfers transfers
GPU < CPU Mapping & Occlusion GPU « CPU

Stream A Y Stream C S s SSS Stream B Y Stream D
1 3 2 4

Workflow of the proposed out-of-core method for both operations: 3D
mapping and occlusion test.
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Results Characterization of real-world scenarios

Test machine:

- Procesador: Intel con 4 nucleos (cores) i7-4790 CPU @ 3.60GHz (hyperthreading
activado con 8 cores virtuales).

- Memoria RAM: 24 GB, Caché L1: 32 KB para datos y 32 KB para instrucciones, Caché
L2: 256 KB, Caché L3: 8 MB.

- GPU: Nvidia TITAN V (Nvidia Driver: 450.57) con 5120 nticleos y VRAM de 12 GB.

Test dataset:

- Point cloud: 66 M. of points
- Images: 12



Test:

Table 5

CPU baseline in GEU (fastest CPU, all times in seconds) where F1 is the first flight (180 images) and F2 is the second

flight (1350 images).

P3-B - AMD Ryzen Threadripper 1950X 16 cores (32 SMT)

Sequential OpenMP Out-of-core
32 thrs CUDA
D1 (66M) 363.9 19.3 0.64
F1 D2 (271M) 1492.8 76.4 1.87
D3 (542M) 2973.6 152.0 3.71
4 (1084M) 5950.0 303.6 6.85
1 (66M) 2667.1 142.3 4.46
) 2 (271M) 10829.7 562.2 12.67
3 (542M) 21665.7 1122.9 25.27
4 (1084M) 43309.8 2233.6 49.99
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Table 3

Execution time for mapping one image on the 3D model using the Platform P1.

Datasets

Future Generation Computer Systems 134 (2022) 66-77

Time (ms) per image on average

D1 (66M)
D2 (271M)
D3 (542M)
D4 (1084M, P, = 271M)

60
237
474

350

300

250

200

150

100

50

D1 (66M) D2 (271M) D3 (542M) D4 (1084M)

—Seguential e OpenMP CUDA

D2 (271M) D3 (542M) D4 (1084M)

OpeniP s CUDA

We observe that the problem is better suited to the GPU architecture and
achieves more than 30 times better results than the parallel CPU solution.

Contents lists available at ScienceDirect X =
FlBICIS]
Future Generation Computer Systems
=
journal homepage: www.elsevier.com/locate/fges _—
An out-of-core method for GPU image mapping on large 3D scenarios
of the real world St
Juan M. Jurado®”, Emilio J. Padrén®, J. Roberto Jiménez*, Lidia Ortega®
2 Computer Graphics and Geomatics Group of Joén. University of Jaén, Spain
B CITIC Research & Computer Architecture Group, University of A Coruia, Spain
ARTICLE INFO ABSTRACT
Article history: Image mapping on 3D huge scenarios of the real world is one of the most fundamental and
Rocrived 14 July 2021 computational expensive processes for the integration of multi-source sensing data. Recent studies

Reerived in revised form 3 February 2022
Accepted 15 March 2022
Available online 24 March 2022

focused on the observation and characterization of Earth have been enhanced by the proliferation
of Unmanned Aerial Vehicle (UAV) and sensors able to capture massive datasets with a high spatial
resolution. Despite the advances in manufacturing new cameras and versatile platforms, only a few

Keywords: methods have been developed to characterize the study area by fusing heterogeneous data such as
Parallel computing thermal, multispectral or hyperspectral images with high-resolution 3D models. The main reason for
GRGPU- this lack of solutions is the challenge to integrate multi-scale datasets and high computational efforts
;’!:fﬂ;“;l’ﬂ'"g required for image mapping on dense and complex geometric models. In this paper, we propose

an efficient pipeline for multi-source image mapping on huge 3D scenarios. Our GPU-based solution
significantly reduces the run time and allows us to generate enriched 3D models on-site. The proposed
method is out-of-core and it uses available resources of the GPU's machine to perform two main
tasks: (i) image mapping and (ii) occlusion testing. We deploy highly-optimized GPU-kernels for image
mapping and detection of self-hidden geometry in the 3D model, as well as a GPU-based parallelization
to manage the 3D model considering several spatial partitions according to the GPU capabilities. Our
method has been tested on 3D scenarios with different point cloud densities (66M, 27 1M, 542M) and
two sets of multispectral images collected by two drone flights. We focus on launching proposed
method on three platforms: (i) System on a Chip (SeC), (ii) a user-grade laptop and (i) a PC. The
results demonstrate the method's capabilities in terms of performance and versatility to be computed
by commodity hardware. Thus, taking advantage of GPUs, this method opens the door for embedded

and edge computing devices for 3D image mapping on large-scale scenarios in near real-time.
0 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses /by-nc-nd/4.0/).

Multi-source data fusion

1. Introduction day's flying usually generates large amounts of information that
needs high computational requirements to be processed.

Nowadays, precision agriculture or environmental health di- Applications of these technologies are very diverse. Thermal
agnostics make widespread use of multi-sensors coupled with sensing, for instance, is useful for detecting the impact of heat
drones or UAVs (Unmanned Aerial Vehicles). Some of these de- waves and drought in crops or ecosystems [1]. However, not

always only one sensor is attached to the drone. There is a
tendency to use several combined sensors in the so-called UAS
(Unmanned Aerial Systems) to obtain diversified information [2].
As a consequence, huge amounts of heterogeneous data must be
managed.

An additional objective is to process all this heterogeneous
information under the same data model, including the 3D models.
In fact, RGB and LiDAR sensors allow us to generate 30 point
clouds, which characterize the geometric properties of soil and
vegelation. Therefore, an ideal capture and processing mechanism

* Corresponding author. would be able to autematically integrate both geometric and
E-mail gddress: jjurado@ujaen.cs {JM. Jurade). spectral information in the same data model over time. Thus,

vices are thermal sensors, RGB, multispectral or hyperspectral
cameras, as well as LIDAR (Light Detection and Ranging or Laser
Imaging Detection and Ranging) systems. At present, they all have
lightened their weight, improved their performances and lowered
their cost. This allows us Lo monitor large areas of crops or forests
remotely, obtaining information in the visible and non-visible
spectral ranges. Large areas can be monitered on each Might,
depending on the flight altitude and battery life. In any case, a

https:/doi 101016/} future 2022 03.022
0167-739X/0 2022 The Author(s). Publishcd by Elsevier BV. This is an open access article under the CC BY-NC-ND license (bt
nc-nd/4.0/).

licenses|by-
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Applications

1- Precision agriculture

- 2- Semantic segmentation

3- Geometric segmentation
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Applications

g

1- Morphological characterization of trees

- 2- Volume computation

3- Spatial data structures
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1- Species recognition

2- Forest inventory
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- (1) Leaves
B @ wood
- (3) Plants
B @ Flowers
. (5) Rocks
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UAV imagery
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W Detected plants
Estimated plants
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M Detected plants

Estimated plants
W Missing plants
| Corrected errors
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[N GEU (Geospatial and Environmental tools of UJA)

~Tools

There’s not a model loaded yet

Save Model | Show/Hide Model Clear Scene | Load Mesh |
Multispectral
3D Mapp n:l I 1cP aigorithm 30 NOVI | |

Classification | [~ Motz

Load DSM cloud

Semantic Temporal i Orthorectification
Load Cameras | Shouy/Hide Euler angle
BRDF Sampling
F Vineyard
Alph 1| Preprocessing Load Data | ‘ I n
W3 3D Viewer

Multispectral image
mapping on 3D models

Characterisation of tree species

GEU (Geospatial and Environmental tools of UJA)

4 \‘"’hv;
Va1

GEU

Semantic segmentation of
natural materials

I1

Geometric-based segmentation
of a vineyard
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Our spin-off

GEUSOL
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Generacion de escenarios sinteticos

Larger ellipse flattening factor

Higher scan and pulse frequency

Scans/sec | - 4t

&
S|

Pulses/sec
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Low vegetation




A. Loépez, C. J. Ogayar, J. M. Jurado and F. R. Feito, "A GPU-
Accelerated Framework for Simulating LiDAR Scanning," in IEEE
Transactions on Geoscience and Remote Sensing, vol. 60, pp. 1-18, 2022, Art
no. 3000518, doi: 10.1109/TGRS.2022.3165746.
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OVERVIEW

In this study, we propose a method to reconstruct real-
world environments based on LiDAR data, thus
overcoming density limitations and generating rich

environments with ground and high vegetation.

Additionally, our proposal segments the original data
to distinguish among different kinds of trees. The
results show that the method is capable of generating
realistic environments with the chosen density and
including specimens of the identified tree types.

a) LiDAR point cloud

b) Reconstructed surface

c) Vegetation clustering

Figure 3. Comparison of publicly available LiDAR point

cloud and enhanced environment.

Modeling and enhancement of LiDAR point clouds

PROBLEM

real-world p
etation

3D modeling

e a method to
based on  LiD.

with the ch
entified t

CONCLUSIONS

from natural scenarios ’ "

José A. Collado’, Alfonso Lépez', Juan R. Jiménez', and Geomatics
Lidia M. Ortega', Francisco R. Feito', Juan M. Jurado'

Department of Computer Science, University of Jaén

uired by
devices.

e main

natural

original data
s of trees. The
d is capable of

We have presented a preliminary study regarding the

reconstruction of n 1d environments to out

ANDREW
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Our approach is based on guided
procedural modeling of real-world
point clouds using scanned data
in order to generate synthetic
scenarios in natural
environments. To this end, we use
open LIDAR data to model
vegetation and ground layers.

Ground modeling: As a first step,
the ground is uniformly split using
a regular grid. For each voxel,
relevant point data is aggregated,

such as their color and elevation.
Figure 1. Overview of our method,

Next, a NURBS {non-uniform rational B-spline) surface is automatically built using the prior
voxel discretization. To resample the reconstructed ground, we use a spatial probability
distribution function for each voxel. Hence, voxels are populated with new points as long as a
given density goal is not achieved. As a result, we represent the ground as a 3D spline that
allows both to reconstruct the scene as a triangle mesh or as a dense point cloud. Figure 2b
represents the reconstructed surface achieved with this method.

Vegetation modeling: Points labeled as high vegetation are then processed to reconstruct
forestry areas. To this end, these points are clustered to differentiate tree specimens. We
solved this using a clustering method based on a threshold distance and color similarity. Once
clusters are built, we generate a regular grid for each one. Hence, tree roots are considered to
be located in voxels whose density is significantly higher than the ground density. The vertical
position (Y) of each tree will be determined by the NURBS created in the ground process,
whereas their size is computed considering non-empty voxels of the area around the XZ
position.

4 LIDAR poiet doud b Reconstructed surface ) Vegetation cuateris st

Figure 2. Partial results of the proposed method, in comparison with the original point cloud (a),

RESULTS

With the proposed method, we generate
point clouds with a user-defined increase
of point density. Figure 3 compares the
input and the resulting point cloud with
10x more density.

Furthermore, we reconstruct vegetation
that is poorly acquired with a LIDAR

sensor by instancing and sampling tree

triangle meshes. As depicted in Figure 3,

the first image barely shows tree canopy

returns. However, our result fills the

ground areas not reached by LIDAR with

dense vegetation. Also, we managed to

replicate 254417 different trees within Figure 3. Comparison of publicly available LIDAR point
the obtained clusters, clowd and enhanced environment




hanks you for your attention!

jjurado@gmail.com

https://www.researchgate.net/profile/Juan-M-Jurado/publications
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