

HOW NVIDIA ENGAGES IN DIFFERENT INDUSTRIES

HPC Across Industries

NVIDIA GPUs are optimizing over 700 applications across a broad range of industries and domains. See how GPU technology is tackling complex problems and transforming the global research community.

Supercomputing

Exploring supernova explosions. Mapping the Earth's interior. Predicting hurricanes. NVIDIA is powering the world's fastest supercomputers and HPC systems, giving researchers the power they need to simulate and predict our world.

Learn More >

Healthcare & Life Sciences

Discovering drugs. Uncovering genetic mutations. Analyzing images. NVIDIA is equipping the world's leading healthcare institutions with advanced tools to accelerate precision medicine and build next-generation clinics.

Learn More >

Energy

Producing energy. Refining and distributing oil. Reducing environmental impact. NVIDIA technologies are impacting world economies by fueling innovation in energy and enhancing individual ways of life.

Learn More >

Public Sector

Cybersecurity. Disaster response.

Humanitarian assistance. NVIDIA is building the technology for our world that will make communities safer and more connected everywhere.

Learn More >

Run GPU-Accelerated Apps

From weather prediction and materials science to wind tunnel simulation and genomics, NVIDIA GPU-accelerated computing is at the heart of HPC's most promising areas of discovery.

The NVIDIA CUDA' programming model is the platform of choice for high-performance application developers, with support for more than **700 GPU-accelerated applications**—including the top 15 HPC applications developers. Many of the top HPC applications are made available as pre-configured, containerized software on NGC.

- (i) See HPC Application Performance
- (i) Explore HPC Software
- (i) Explore Containers Available in NGC

Classical HPC Modelling accelerated computing performance improvement,...

Classical HPC Modelling accelerated computing is great but,...

DEEP LEARNING IS SWEEPING ACROSS INDUSTRIES

Internet Services
Image/Video Classification
Speech Recognition
Natural Language Processing

Medicine
Cancer Cell Detection,
Diabetic Grading,
Drug Discovery

Media & Entertainment
Video Captioning
Content Based Search
Real Time Translation

Security & Defense Face Recognition Video Surveillance Cyber Security

Autonomous Machines
Pedestrian Detection
Lane Tracking
Recognize Traffic Signs

Use Cases in Every Industry

CONSUMER INTERNET

Ad Personalization
Click Through Rate Optimization
Churn Reduction

FINANCIAL SERVICES

Claim Fraud
Customer Service Chatbots/Routing
Risk Evaluation

HEALTHCARE

Improve Clinical Care
Drive Operational Efficiency
Speed Up Drug Discovery

RETAIL

Supply Chain & Inventory Management

Price Management / Markdown Optimization

Promotion Prioritization And Ad Targeting

OIL & GAS

Sensor Data Tag Mapping Anomaly Detection Robust Fault Prediction

MANUFACTURING

Remaining Useful Life Estimation
Failure Prediction
Demand Forecasting

TELECOM

Detect Network/Security Anomalies
Forecasting Network Performance
Network Resource Optimization (SON)

AUTOMOTIVE

Personalization & Intelligent Customer Interactions
Connected Vehicle Predictive Maintenance
Forecasting, Demand, & Capacity Planning

Key NVIDIA Al use cases for:

- Automotive
- Financial Services (FSI)
- Energy: Oil & Gas / Utilities
- Healthcare
- Higher Education & Research (HER)
- Manufacturing
- Manufacturing Product Development
- Media and Entertainment
- Retail
- Telecommunications (Telco)
- Architecture, Engineering and Construction (AEC)
- HR and Education

ACCELERATING AI & HPC TO TRANSFORM AUTOMOTIVE

ACCELERATING DIGITAL TRANSFORMATION IN FSI

AI/ML Optimizes Performance and Outcomes

Customer Service

Default Prediction

Recommendations

Fraud Detection

Virtualization (WFH)

Digital Payments

Algorithmic Trading

AI USE CASES IN OIL AND GAS

Oil and Gas

Visualization

MANUFACTURING OVERVIEW

NVIDIA HAS SOLUTIONS FOR THE ENTIRE HEALTHCARE PATHWAY

Al Models & Frameworks | Accelerated Applications & Libraries

EXASCALE AI FOR CLIMATE PREDICTION

The ability to accurately predict the path of extreme weather systems can save lives and safeguard global economies.

Researchers at Lawrence Berkeley National Laboratory used a climate dataset on the Summit supercomputer with NVIDIA Tensor Core GPUs to train a deep neural network to identify extreme weather patterns from high-resolution climate simulations.

The team achieved a performance of 1.13 exaflops — the fastest deep learning algorithm reported.

Pictured: high-quality segmentation results produced by deep learning on climate datasets. Image

POWERING RETAIL IN THESE CHALLENGING TIMES

Top 3 Segments of Al Use Cases in Retail

Collaborate + Manage (9.5M)

NVIDIA AI ENTERPRISE IN MEDIA AND ENTERTAINMENT

EDITORS

REMOTE WORK / COLLABORATION

ARTIFICIAL INTELLIGENCE

Visual Computing and AI Solutions

NVIDIA TECHNOLOGIES TRANSFORMING AEC WORKFLOWS

Real-time Photoreal Rendering Immersive VR

3D Graphics Virtualization

Artificial Intelligence

It is all about platform: Our solutions catalog: NGC

Portal to Al services, freesoftware, support NGC Catalog

Nvidia NGC Catalog

Getting Started

NVIDIA AI - End-to-End Al Development &...

This is a collection of performanceoptimized frameworks, SDKs, and models to build Computer Vision and Speech Al applications.

View Labels

HPC Collection

Collection - High Performance
Computing

This collection provides access to the top HPC applications for Molecular Dynamics, Quantum Chemistry, and Scientific

View Labels

Deep Learning Frameworks

Secollection - Deep Learning

This collection contains performanceoptimized AI frameworks including PyTorch and TensorFlow

View Labels

NGC - Getting Started

Collection - Beginner

Looking to get started with containers and models on NGC? This is the place to start.

View Labels

Documentation

We've got a whole host of documentation, covering the NGC UI and our powerful CLI. You can find out more here. Go to Documentation

Command Line Interface

Want to get more from NGC? Everything you see here can be used and managed via our powerful CLI tools. Download Now

NGC Private Registry

Private Registries from NGC allow you to secure, manage, and deploy your own assets to accelerate your journey to Al. Learn More

NGC Popular collections

Popular Collections

HPC Collection

Computing

Computing

This collection provides access to the top HPC applications for Molecular Dynamics, Quantum Chemistry, and Scientific

View Labels

Automatic Speech Recognition

Collection - Automatic Speech : Recognition

A collection of easy to use, highly optimized Deep Learning Models for Recommender Systems. Deep Learning Examples provides

View Labels

Clara Discovery

Collection - Healthcare

Clara Discovery is a collection of frameworks, applications, and Al models enabling GPU-accelerated computational drug discovery

View Labels

See Alf Collections

Clara NLP

Collection - Healthcare

Clara NLP is a collection of SOTA biomedical pre-trained language models as well as highly optimized pipelines for training NLP models on biomedical and...

View Labels

Clara Perabricks

Collection - Healthcare

Clara Parabricks is a collection of software tools and notebooks for next generation sequencing, including short- and long-read applications. These tools are designed to...

View Labels

DeepStream - CV Deployment

Collection - Intelligent Video Analytics

DeepStream SDK delivers a complete streaming analytics toolkit for Al based video and image understanding and multisensor processing. The DeepStream SDK...

View Labels

NGC - Getting Started

S Collection - Beginner

Looking to get started with containers and models on NGC? This is the place to start.

View Labels

Image Segmentation

Collection - Image Classification

A collection of easy to use, highly optimized.

Deep Learning Models for Image.

Segmentation. Deep Learning Examples provides Data Scientist and Software...

View Labels

Nvidia free popular containers and resources

NVIDIA Data Center GPU Portfolio. Workload oriented

	GPU	DL Training & DA	DL Inference	HPC / AI	Omniverse / Render Farms	Virtual Workstation	Virtual Desktop (VDI)	Mainstream Acceleration	Far Edge Acceleration
	H100								
Compute	A100								
	A30								
	L40								
Sompute	A40								
Graphics / (A10								
	A16								
Form Factor ute/Graphics	A2								
Small Form Compute/G	T4								

NVIDIA HOPPER

The Engine for the World's Al Infrastructure

World's Most Advanced Chip

Transformer Engine

2nd Gen MIG

Confidential Computing

4th Gen NVLink

DPX Instructions

H100 SXM

H100 PCIE

TRANSFORMER ENGINE

Tensor core optimized for transformer models

- 6X Faster Training and Inference of Transformer Models
- NVIDIA Tuned Adaptive Range Optimization Across 16-bit and 8-bit Math
- Configurable Macro Blocks Deliver Performance Without Accuracy Loss

Statistics and Adaptive Range Tracking

16-bit

8-bit

NVIDIA H100 SXM5 AND PCIE

Unprecedented Performance, Scalability, and Security for Every Data Center

	H100 PCIe	H100-80 SXM5	H100-94 SXM5
New Features			
- Dynamic Programming Instructions	Supported	Supported	Supported
- Confidential Computing	Supported	Supported	Supported
- Transformer Engine with FP8	Supported	Supported	Supported
- Peak FP8 Tensor TFLOPS	1513/3026	1978/3957	1978/3957
- Peak FP16 Tensor TFLOPS	756/1513	989/1978	989/1978
- Peak TF32 Tensor TFLOPS	378/756	494/989	494/989
- Peak FP64 Tensor TFLOPS	51.2	67	67
- Peak INT8 Tensor TOPS	1513/3026	1978/3957	1978/3957
- Peak FP16 TFLOPS (non-Tensor)	102	134	134
- Peak BF16 TFLOPS (non-Tensor)	102	134	134
- Peak FP32 TFLOPS (non-Tensor)	51	67	67
- Peak FP64 TFLOPS (non-Tensor)	25	33	33
- Peak INT32 TOPS	25	33	33
Memory			
- Memory Interface	5120-bit HBM2e	5120-bit HBM3	6144-bit HBM2e
- Memory Size	80 GB	80 GB	94 GB
- Memory Bandwidth	2000 GB/sec	3300 GB/sec	2400 GB/sec
L2 Cache Size	50 MB	50 MB	50 MB
TDP	350 Watts	700 Watts	700 Watts

HOPPER ARCHITECTURE

H100 GPU Key features

2nd Gen Multi-Instance GPU
Confidential Computing
PCIe Gen5

Larger 50 MB L2

80GB HBM3, 3 TB/s bandwidth

132 SMs 4th Gen Tensor Core

Thread Block Clusters

4th Gen NVLink 900 GB/s total bandwidth

Omniverse Enterprise

Build custom 3D metaverse applications, power large-scale simulations and operate photorealistic virtual worlds and complex digital twins

Rendering

Work with complex scenes and high-fidelity creative workflows with 3rd-Gen RTX and 48GB of GPU memory

Virtualization*

Deliver high-performance workstation instances for high-end design, AI, and compute workloads

Al

Provision virtual AI/ML virtual workstations for model development, training, data exploration. Multi-GPU AI for larger workloads.

*vGPU support in Q1 2023

NVIDIA L40

NVIDIA L40 GENERATIONAL COMPARISON

NVIDIA L40

NVIDIA A40

GPU Architecture	NVIDIA Ada Lovelace Architecture	NVIDIA Ampere Architecture			
FP32	90.5 TFLOPS	37.4 TFLOPS			
RT Core	209 TFLOPS	73.1 TFLOPS			
Tensor Float 32 (TF32)	90.5 181** TFLOPS	74.8 149.6* TFLOPS			
BFLOAT16 Tensor Core	181 362** TFLOPS	149.7 299.4* TFLOPS			
FP16 Tensor Core	181 362** TFLOPS	149.7 299.4* TFLOPS			
FP8 Tensor Core	362 724** TFLOPS	NA			
INT8 Tensor Core	362 724** TOPS	299.3 598.6* TOPS			
INT4 Tensor Core	724 1448** TOPS	598.7 1197.4* TOPS			
GPU Memory	48 GB GDDR6 w/ ECC	48 GB GDDR6 w/ ECC			
GPU Memory Bandwidth	864 GB/s	696 GB/s			
Max Thermal Design Power (TDP)	300 W	300 W			
Form Factor	4.4" H x 10.5" L - Dual Slot	4.4" H x 10.5" L - Dual Slot			
Interconnect	PCIe Gen4 x16: 64 GB/s	PCIe Gen4 x16: 64GB/s NVIDIA® NVLink® bridge for 2 GPUs:112.5 GB/s			
Server Options	Partner and NVIDIA-Certified Systems™, NVIDIA® OVX™	Partner and NVIDIA-Certified Systems™, NVIDIA® OVX™			

HOPPER AND BANDWIDTH

For HPC and Al

X86 GPU-GPU NVLINK

Architectures & Cost of Connectivity

H100 SXM5 NODE DESIGN

NDR Processor(s) HOPPER HOPPER $\mathbf{\Omega}$ 00 HOPPER HOPPER Processor(s) PCIe GEN5 GPU NVLINK NDR

NVIDIA GRACE PLATFORM

Grace Hopper Superchip

Giant Scale AI & HPC

Accelerated applications where CPU performance and system memory BW are critical since AI models continue to get bigger and our GPUs get even faster

Grace CPU Superchip

CPU Computing

Applications that are not accelerated yet but where absolute performance, energy efficiency, and datacenter density matter, such as in scientific computing, data analytics, and hyperscale computing applications

NVIDIA NVLink-C2C is an NVIDIA memory coherent, high-bandwidth, and low-latency superchip interconnect. It is the heart of the Grace Hopper Superchip and delivers up to 900 GB/s total bandwidth. This is 7x higher bandwidth than x16 PCIe Gen5 lanes commonly used in accelerated systems.

4.4x

4.0x

3.6x

1.9x

1.3x

ML Training

Databases

HPC

NVLink-C2C enables applications to oversubscribe the GPU's memory and directly utilize NVIDIA Grace CPU's memory at high bandwidth. With up to 512 GB of LPDDR5X CPU memory per Grace Hopper Superchip, the GPU has direct high-bandwidth access to 4x more memory than what is available with HBM. Combined with the NVIDIA NVLink Switch System, all GPU threads running on up to 256 NVLink-connected GPUs can now access up to 150 TB of memory at high bandwidth. Fourth-generation NVLink enables accessing peer memory using direct loads, stores, and atomic operations, enabling accelerated applications to larger problems more easily than ever.

BACK TO THE BEGINNING: HOW NVIDIA HELPS IN DIFFERENT INDUSTRIES

A FEW VIDEOS

NVIDIA Omniverse

https://www.youtube.com/watch?v=Gn_IMIPrX9s

AMAZON Digital twin warehouse

https://www.youtube.com/watch?v=-VQLqs6s9y0

DriveSIm Mercedes

https://www.youtube.com/watch?v=UoPXzzK_g1Q

DRIVE Sim Scenario Reconstruction, Powered by Omniverse - YouTube

NVIDIA Healthcare

https://www.youtube.com/watch?v=qlNbC88SU7o

NVIDIA Clara/Holoscan

https://www.youtube.com/watch?v=RVFIDEuNtt0

https://www.youtube.com/watch?v=cGuh5XAdowg

INTERESTING NVIDIA LINKS FOR THE HER COMMUNITY

https://developer.nvidia.com/higher-education-and-research

diverse set of resources—including hardware grants, hands-on workshops, certifications, teaching materials, self-paced

https://catalog.ngc.nvidia.com/

https://www.nvidia.com/en-us/training/

https://www.nvidia.com/en-in/deep-learning-ai/education/ambassador-program/

https://www.nvidia.com/en-us/startups/

Thank You!!! JAVIERP@NVIDIA.COM +34 635520529