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3 Ways to Accelerate on GPU 



Constant progress on library development 



CUDA Math Libraries 
High performance math routines for your applications: 

 cuFFT – Fast Fourier Transforms Library 

 cuBLAS – Complete BLAS Library 

 cuSPARSE – Sparse Matrix Library 

 cuRAND – Random Number Generation (RNG) Library  

 NPP – Performance Primitives for Image & Video Processing 

 Thrust – Templated C++ Parallel Algorithms & Data Structures 

 math.h - C99 floating-point Library 

 

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda  

 

http://www.nvidia.com/getcuda


 

Linear Algebra 



A Birds Eye View on Linear Algebra 
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Parallel: Distributed memory parallel 

Serial: Single node 



Sometimes it seems as if there’s only 
three … 
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.. but there is more … 
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Trilinos 

PETSc 

Matlab 

… and even more .. 
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NVIDIA CUDA Library Approach 

 Provide basic building blocks 

 Make them easy to use 

 Make them fast 

 

 

 Provides a quick path to GPU acceleration 

 Enables ISVs to focus on their “secret sauce” 

 Ideal for applications that use CPU libraries 
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NVIDIA’s Foundation for LinAlg on GPUs 
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NVIDIA cuBLAS 
NVIDIA cuSPARSE 



cuBLAS Level 3 Performance 

• 4Kx4K matrix size         

• cuBLAS 4.1, Tesla M2090 (Fermi), ECC on   

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 

3.33 GHz 

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL 

Performance may vary based on OS version and motherboard configuration 



• cuBLAS 4.1 on Tesla M2090, ECC on 

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz Performance may vary based on OS version and motherboard configuration 

ZGEMM Performance vs Intel MKL 



cuBLAS: Legacy and Version 2 Interface 

 Legacy Interface 

— Convenient for quick port of legacy code 

 

 Version 2 Interface 

— Reduces data transfer for complex algorithms 

 Return values on CPU or GPU 

 Scalar arguments passed by reference 

 

— Support for streams and multithreaded environment 

— Batching of key routines 

 



Version 2 Interface helps reducing memory 
transfers 
  

 

 Legacy Interface 

 idx = cublasIsamax(n, d_column, 1); 

 err = cublasSscal(n, 1./column[idx], row, 1);  

  

  

 

Index transferred to 

CPU, CPU needs 

vector elements for 

scale factor 



Version 2 Interface helps reducing memory 
transfers 
  

 

 Legacy Interface 

 idx = cublasIsamax(n, d_column, 1); 

 err = cublasSscal(n, 1./d_column[idx], row, 1);  

  

 Version 2 Interface 

 err = cublasIsamax(handle, n, d_column, 1, d_maxIdx); 

 kernel<<< >>> (d_column, d_maxIdx, d_val); 

 err = cublasSscal(handle, n, d_val, d_row, 1); 

  

 

Index transferred to 

CPU, CPU needs 

vector elements for 

scale factor 

All data remains 

on the GPU 



• cuBLAS 4.1 on Tesla M2090, ECC on 

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz Performance may vary based on OS version and motherboard configuration 

cuBLAS Batched GEMM API improves 
performance on batches of small matrices 
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The cuSPARSE - CUSP Relationship 

Solver 

Matrix 

Vector 

Dense Sparse 

P
a
ra

ll
e
l 

NVIDIA cuSPARSE 

S
in

g
le

 

N
o
d
e
 



cuSPARSE is >6x Faster than Intel MKL 

Performance may vary based on OS version and motherboard configuration 

•cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on   

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680  

   Six-Core @ 3.33 GHz 
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Sparse Matrix x Dense Vector Performance 
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*Average speedup over single, double, single complex & double-complex 



Up to 40x faster with 6 CSR Vectors 

Performance may vary based on OS version and motherboard configuration 

• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on   

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 

3.33 GHz 
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    cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm) 
Useful for block iterative solve schemes 

single double single complex double complex
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Speedup for Tri-Diagonal solver (gtsv)* 

single double complex double complex

Performance may vary based on OS version and motherboard configuration 

• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on   

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 

3.33 GHz 

Tri-diagonal solver performance vs. MKL 

*Parallel GPU implementation does not include pivoting 



Third Parties Extend the Building Blocks 
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Different Approaches to Linear Algebra 

 CULA tools (dense, sparse) 

— LAPACK based  API 

— Solvers, Factorizations, Least Squares, SVD, Eigensolvers 

— Sparse: Krylov solvers, Preconditioners, support for 

 various formats 

culaSgetrf(M, N, A, LDA, INFO) 

 

 

 ArrayFire (LibJacket) 

— “Matlab-esque” interface 

— Array container object 

— Solvers, Factorizations, SVD, Eigensolvers 

array out = lu(A)  

 

 

 

 

ArrayFire Matrix 
Computations 

S0307 (Wed) 

S0325 (Wed) 



Different Approaches to Linear Algebra 
(cont.) 

 MAGMA 

— LAPACK conforming API 

— Magma BLAS and LAPACK 

— High performance by utilizing both GPU and CPU 

magma_sgetrf(M, N, NRHS, A, LDA, INFO) 

 

 LibFlame 

— LAPACK compatibility interface 

— Infrastructure for rapid linear algebra algorithm  

 development 

FLASH_LU_piv(A, p) 

 

 

 

 

 

FLAME Library 

S0042 (Wed) 



Toolkits are increasingly supporting GPUs 

 PETSc 

— GPU support via extension to Vec  

 and Mat classes 

— Partially dependent on CUSP 

— MPI parallel, GPU accelerated solvers 

 

 Trilinos 

— GPU support in KOKKOS package 

— Used through vector class Tpetra 

— MPI parallel, GPU accelerated solvers 



 

Signal Processing 



Common Tasks in Signal Processing 

Filtering Correlation Segmentation 



Vector Signal 
Image Processing 

NVIDIA NPP 

Parallel Computing 
Toolbox 

Libraries for GPU Accelerated 
Signal Processing 

ArrayFire Matrix 
Computations 

GPU Accelerated 
Data Analysis 



Basic concepts of cuFFT 

 Interface modeled after FFTW 

— Simple migration from CPU to GPU 

fftw_plan_dft2_2d => cufftPlan2d 

 

 “Plan” describes data layout, transformation strategy 

— Depends on  dimensionality, layout, type of transform 

— Independent of actual data, direction of transform 

— Reusable for multiple transforms 

 

 Execution of plan  

— Depends on transform direction, data 

cufftExecC2C(plan, d_data, d_data, CUFFT_FORWARD) 

 



Efficient use of cuFFT 

 Perform multiple transforms with the same plan 

— Use e.g. in  forward/inverse transform for convolution,  

     transform at each simulation timestep, etc. 

 

 Transform in streams 

— cufft functions do not take a stream argument 

— Associate a plan with a stream via 

 cufftSetStream(plan, stream) 

 

 Batch transforms 

— Concurrent execution of multiple identical transforms 

— Support for 1D, 2D and 3D transforms 

 

 



High 1D transform performance is key to 
efficient 2D and 3D transforms 

• Measured on sizes that are exactly powers-of-2 

• cuFFT 4.1 on Tesla M2090, ECC on 

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz 
Performance may vary based on OS version and motherboard configuration 
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Optimized 3D transforms 

• cuFFT 4.1 on Tesla M2090, ECC on 

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz 
Performance may vary based on OS version and motherboard configuration 



 Example: Range-Doppler compression 

 

 

 

 

 No need for explicit transpose with cufftPlanMany 

— Independent input and output strides/internal dimension  

 cufftPlanMany( cufftHandle *plan, int rank, int *n,  

  int *inembed, int istride, int idist, // input layout 

  int *onembed, int ostride, int odist, // output layout 

  cufftType type, int batch) 

 

 

 

cufftPlanMany: Transformation on 
complex data layouts 

1D FFT 1D IFFT 1D 

FFT 

1D 

IFFT 



Basic concepts of NPP 

 Collection of high-performance GPU processing 

— Initial focus on Image, Video and Signal processing 

 Growth into other domains expected 

— Support for multi-channel integer and float data 

 

 C API => name disambiguates between data types, flavor  

nppiAdd_32f_C1R (…) 

— “Add” two single channel (“C1”) 32-bit float (“32f”) images, 

possibly masked  by a region of interest (“R”)  



NPP features a large set of functions 

 Arithmetic and Logical Operations 

— Add, mul, clamp, ..  

 Threshold and Compare 

 

 Geometric transformations 

— Rotate, Warp, Perspective transformations 

— Various interpolations 

 

 Compression 

— jpeg de/compression 

 

 Image processing 

— Filter, histogram, statistics 

 

NVIDIA NPP 

S0404 (Tue) 



GPU-VSIPL – Vector Image Signal 
Processing Library 

 Open Industry Standard for Signal Processing 

 Focus on embedded space, but support for GPU, CPU, ..  

 Separate memory spaces integral part of API 

 Support for single precision float, fft, matrix factorization 

 GPU enabled version from Georgia Tech 

— Lite and Core API 

 vsip_ccfftmip_f(d->fft_plan_fast,d->z_cmview); 

 

 VSIPL++ by Mentor Graphics   

S0620 (Tue) 

 

 



Multi-GPU FFT 

 Many problems too large for single GPU 

 Careful about data layout 

— perform 1D transforms on a single GPU if possible 

 

 Minimize data transfer cost (GPU direct)  

— Multi-Dimensional distributed memory FFT  

     requires all-to-all   

 

 Various presentations here at GTC: 

— Akira Nukada, Tokyo Institute of Technology, S0290 (Wed) 

— Filippo Spiga, ICHEC, S0220 (Thu) 

 

 



 

cuRAND 



Random Number Generation on GPU 

 Generating high quality random numbers in parallel is hard 

— Don’t do it yourself, use a library! 

 

 Large suite of generators and distributions 

— XORWOW, MRG323ka, MTGP32, (scrambled) Sobol 

— uniform, normal, log-normal 

— Single and double precision 

 

 

 Two APIs for cuRAND 

— Host: Ideal when generating large batches of RNGs on GPU 

— Device: Ideal when RNGs need to be generated inside a kernel 

 



cuRAND: Host vs Device API 

 Host API 

 #include “curand.h” 

 curandCreateGenarator(&gen, CURAND_RNG_PSEUDO_DEFAULT); 

 curandGenerateUniform(gen, d_data, n); 

 

 Device API 

 #include “curand_kernel.h” 

 __global__ void generate_kernel(curandState *state) { 

      int id = threadIdx.x + blockIdx.x * 64; 

     x = curand(&state[id]); 

 } 

 

 

 

 

Generate set of 

random 

numbers at once 

Generate  random 

numbers per thread 



cuRAND Performance compared to Intel MKL 

Performance may vary based on OS version and motherboard configuration 

•cuRAND 4.1, Tesla M2090 (Fermi), ECC on   

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 @ 

3.33 GHz 



 

Next steps.. 



Thurst: STL-like CUDA Template Library  

 Device and host vector class 

   thrust::host_vector<float> H(10, 1.f); 

   thrust::device_vector<float> D = H; 

 

Iterators 

 thrust::fill(D.begin(), D.begin()+0, 42.f); 

 float* raw_ptr = thrust::raw_pointer_cast(D); 
 

 Algorithms 

Sort, reduce, transformation, scan, ..  

 thrust::transform(D1.begin(), D1.begin(), D2.begin(), D2.end(),    

        thrust::plus<float>());   // D2 = D1 + D2 

    

 

 

C++ STL Features 
for CUDA 

S0602 (Tue),  

S0653 (Thu) 

http://code.google.com/p/thrust/downloads/list


Using Libraries with OpenACC 

Libraries often require explicit device data 

Device data transparent in OpenACC  

Inform OpenAcc about device variables with data deviceptr 

clause 

 

cufftExecPlan(plan, d_signal,d _signal) 

… 

#pragma acc data deviceptr(d_signal) 

#pragma acc loop independent 

for(i=0; i<n; i++) d_signal[i] = 2 * d_signal[i];  

 

       Session S0622 (Thu) 



Explore the CUDA (Libraries) Ecosystem 

CUDA Tools and Ecosystem 

described in detail on NVIDIA 

Developer Zone: 

developer.nvidia.com/cuda-

tools-ecosystem  

 

Attend GTC library talks 

 

http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem


Summary 

 CUDA libraries offer a broad range of high-performance functions 

 3rd party libraries provide extended functionality 

 By sticking to commonly used interfaces, legacy code can be 

moved quickly to GPUs (“drop-in”) 

 Libraries enable developers to focus on their core IP 

 Libraries interact well with other parts of the CUDA ecosystem 

 

 



Thank you 


