
CUDA Libraries and Ecosystem Overview

Peter Messmer, NVIDIA

3 Ways to Accelerate on GPU

Constant progress on library development

CUDA Math Libraries
High performance math routines for your applications:

 cuFFT – Fast Fourier Transforms Library

 cuBLAS – Complete BLAS Library

 cuSPARSE – Sparse Matrix Library

 cuRAND – Random Number Generation (RNG) Library

 NPP – Performance Primitives for Image & Video Processing

 Thrust – Templated C++ Parallel Algorithms & Data Structures

 math.h - C99 floating-point Library

Included in the CUDA Toolkit Free download @ www.nvidia.com/getcuda

http://www.nvidia.com/getcuda

Linear Algebra

A Birds Eye View on Linear Algebra

Matrix

Solver

Matrix

Vector

A Birds Eye View on Linear Algebra

Matrix

Solver

Matrix

Vector

Dense Sparse

M
u
lt

i

N
o
d
e

S
in

g
le

N
o
d
e

Parallel: Distributed memory parallel

Serial: Single node

Sometimes it seems as if there’s only
three …

Matrix

Solver

Matrix

Vector

Dense Sparse

ScaLAPACK

LAPACK

BLAS

S
in

g
le

N
o
d
e

M
u
lt

i

N
o
d
e

.. but there is more …

Matrix

Solver

Matrix

Vector

Dense Sparse

ScaLAPACK

LAPACK

BLAS

PaStix

PLAPACK Paradiso

Sparse-

BLAS

SuperLU

WSMP

Spooles

TAUCS
MUMPS

UMFPACK

EISPACK
LINPACK

PBLAS

S
in

g
le

N
o
d
e

M
u
lt

i

N
o
d
e

Trilinos

PETSc

Matlab

… and even more ..

Matrix

Solver

Matrix

Vector

Dense Sparse

ScaLAPACK

LAPACK

BLAS

PaStix

PLAPACK Paradiso

Sparse-

BLAS

SuperLU

WSMP

Spooles

TAUCS
MUMPS

UMFPACK

EISPACK
LINPACK

PBLAS

S
in

g
le

N
o
d
e

R, IDL, Python, Ruby,

..

M
u
lt

i

N
o
d
e

NVIDIA CUDA Library Approach

 Provide basic building blocks

 Make them easy to use

 Make them fast

 Provides a quick path to GPU acceleration

 Enables ISVs to focus on their “secret sauce”

 Ideal for applications that use CPU libraries

S
in

g
le

N
o
d
e

NVIDIA’s Foundation for LinAlg on GPUs

Matrix

Solver

Matrix

Vector

Dense Sparse

P
a
ra

ll
e
l

NVIDIA cuBLAS
NVIDIA cuSPARSE

cuBLAS Level 3 Performance

• 4Kx4K matrix size

• cuBLAS 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

3.33 GHz

Up to 1 TFLOPS sustained performance and >6x speedup over Intel MKL

Performance may vary based on OS version and motherboard configuration

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz Performance may vary based on OS version and motherboard configuration

ZGEMM Performance vs Intel MKL

cuBLAS: Legacy and Version 2 Interface

 Legacy Interface

— Convenient for quick port of legacy code

 Version 2 Interface

— Reduces data transfer for complex algorithms

 Return values on CPU or GPU

 Scalar arguments passed by reference

— Support for streams and multithreaded environment

— Batching of key routines

Version 2 Interface helps reducing memory
transfers

 Legacy Interface

 idx = cublasIsamax(n, d_column, 1);

 err = cublasSscal(n, 1./column[idx], row, 1);

Index transferred to

CPU, CPU needs

vector elements for

scale factor

Version 2 Interface helps reducing memory
transfers

 Legacy Interface

 idx = cublasIsamax(n, d_column, 1);

 err = cublasSscal(n, 1./d_column[idx], row, 1);

 Version 2 Interface

 err = cublasIsamax(handle, n, d_column, 1, d_maxIdx);

 kernel<<< >>> (d_column, d_maxIdx, d_val);

 err = cublasSscal(handle, n, d_val, d_row, 1);

Index transferred to

CPU, CPU needs

vector elements for

scale factor

All data remains

on the GPU

• cuBLAS 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz Performance may vary based on OS version and motherboard configuration

cuBLAS Batched GEMM API improves
performance on batches of small matrices

0

20

40

60

80

100

120

140

160

180

200

0 16 32 48 64 80 96 112 128

G
FL

O
P

S

Matrix Dimension (NxN)

cuBLAS 100 matrices cuBLAS 10,000 matrices MKL 10,000 matrices

The cuSPARSE - CUSP Relationship

Solver

Matrix

Vector

Dense Sparse

P
a
ra

ll
e
l

NVIDIA cuSPARSE

S
in

g
le

N
o
d
e

cuSPARSE is >6x Faster than Intel MKL

Performance may vary based on OS version and motherboard configuration

•cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680

 Six-Core @ 3.33 GHz

0

1

2

3

4

5

6

7

Sp
e

e
d

u
p

 o
ve

r
In

te
l M

K
L

Sparse Matrix x Dense Vector Performance

csrmv* hybmv*

*Average speedup over single, double, single complex & double-complex

Up to 40x faster with 6 CSR Vectors

Performance may vary based on OS version and motherboard configuration

• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

3.33 GHz

0

10

20

30

40

50

60

Sp
e

e
d

u
p

 o
ve

r
M

K
L

 cuSPARSE Sparse Matrix x 6 Dense Vectors (csrmm)
Useful for block iterative solve schemes

single double single complex double complex

0

2

4

6

8

10

12

14

16

16384 131072 1048576 2097152 4194304

Sp
ee

d
u

p
 o

ve
r

In
te

l M
K

L

Matrix Size (NxN)

Speedup for Tri-Diagonal solver (gtsv)*

single double complex double complex

Performance may vary based on OS version and motherboard configuration

• cuSPARSE 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @

3.33 GHz

Tri-diagonal solver performance vs. MKL

*Parallel GPU implementation does not include pivoting

Third Parties Extend the Building Blocks

Solver

Matrix

Vector

Dense Sparse

IMSL Library

FLAME
Library

S
in

g
le

N
o
d
e

M
u
lt

i

N
o
d
e

Third Parties Extend the Building Blocks

Solver

Matrix

Vector

Dense Sparse

IMSL Library

FLAME
Library

S
in

g
le

N
o
d
e

M
u
lt

i

N
o
d
e

Different Approaches to Linear Algebra

 CULA tools (dense, sparse)

— LAPACK based API

— Solvers, Factorizations, Least Squares, SVD, Eigensolvers

— Sparse: Krylov solvers, Preconditioners, support for

 various formats

culaSgetrf(M, N, A, LDA, INFO)

 ArrayFire (LibJacket)

— “Matlab-esque” interface

— Array container object

— Solvers, Factorizations, SVD, Eigensolvers

array out = lu(A)

ArrayFire Matrix
Computations

S0307 (Wed)

S0325 (Wed)

Different Approaches to Linear Algebra
(cont.)

 MAGMA

— LAPACK conforming API

— Magma BLAS and LAPACK

— High performance by utilizing both GPU and CPU

magma_sgetrf(M, N, NRHS, A, LDA, INFO)

 LibFlame

— LAPACK compatibility interface

— Infrastructure for rapid linear algebra algorithm

 development

FLASH_LU_piv(A, p)

FLAME Library

S0042 (Wed)

Toolkits are increasingly supporting GPUs

 PETSc

— GPU support via extension to Vec

 and Mat classes

— Partially dependent on CUSP

— MPI parallel, GPU accelerated solvers

 Trilinos

— GPU support in KOKKOS package

— Used through vector class Tpetra

— MPI parallel, GPU accelerated solvers

Signal Processing

Common Tasks in Signal Processing

Filtering Correlation Segmentation

Vector Signal
Image Processing

NVIDIA NPP

Parallel Computing
Toolbox

Libraries for GPU Accelerated
Signal Processing

ArrayFire Matrix
Computations

GPU Accelerated
Data Analysis

Basic concepts of cuFFT

 Interface modeled after FFTW

— Simple migration from CPU to GPU

fftw_plan_dft2_2d => cufftPlan2d

 “Plan” describes data layout, transformation strategy

— Depends on dimensionality, layout, type of transform

— Independent of actual data, direction of transform

— Reusable for multiple transforms

 Execution of plan

— Depends on transform direction, data

cufftExecC2C(plan, d_data, d_data, CUFFT_FORWARD)

Efficient use of cuFFT

 Perform multiple transforms with the same plan

— Use e.g. in forward/inverse transform for convolution,

 transform at each simulation timestep, etc.

 Transform in streams

— cufft functions do not take a stream argument

— Associate a plan with a stream via

 cufftSetStream(plan, stream)

 Batch transforms

— Concurrent execution of multiple identical transforms

— Support for 1D, 2D and 3D transforms

High 1D transform performance is key to
efficient 2D and 3D transforms

• Measured on sizes that are exactly powers-of-2

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
Performance may vary based on OS version and motherboard configuration

0

20

40

60

80

100

120

140

160

180

0 16 32 48 64 80 96 112 128

G
FL

O
P

S

Size (NxNxN)

Single Precision All Sizes 2x2x2 to 128x128x128

CUFFT 4.1

MKL

Optimized 3D transforms

• cuFFT 4.1 on Tesla M2090, ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 Six-Core @ 3.33 GHz
Performance may vary based on OS version and motherboard configuration

 Example: Range-Doppler compression

 No need for explicit transpose with cufftPlanMany

— Independent input and output strides/internal dimension

 cufftPlanMany(cufftHandle *plan, int rank, int *n,

 int *inembed, int istride, int idist, // input layout

 int *onembed, int ostride, int odist, // output layout

 cufftType type, int batch)

cufftPlanMany: Transformation on
complex data layouts

1D FFT 1D IFFT 1D

FFT

1D

IFFT

Basic concepts of NPP

 Collection of high-performance GPU processing

— Initial focus on Image, Video and Signal processing

 Growth into other domains expected

— Support for multi-channel integer and float data

 C API => name disambiguates between data types, flavor

nppiAdd_32f_C1R (…)

— “Add” two single channel (“C1”) 32-bit float (“32f”) images,

possibly masked by a region of interest (“R”)

NPP features a large set of functions

 Arithmetic and Logical Operations

— Add, mul, clamp, ..

 Threshold and Compare

 Geometric transformations

— Rotate, Warp, Perspective transformations

— Various interpolations

 Compression

— jpeg de/compression

 Image processing

— Filter, histogram, statistics

NVIDIA NPP

S0404 (Tue)

GPU-VSIPL – Vector Image Signal
Processing Library

 Open Industry Standard for Signal Processing

 Focus on embedded space, but support for GPU, CPU, ..

 Separate memory spaces integral part of API

 Support for single precision float, fft, matrix factorization

 GPU enabled version from Georgia Tech

— Lite and Core API

 vsip_ccfftmip_f(d->fft_plan_fast,d->z_cmview);

 VSIPL++ by Mentor Graphics

S0620 (Tue)

Multi-GPU FFT

 Many problems too large for single GPU

 Careful about data layout

— perform 1D transforms on a single GPU if possible

 Minimize data transfer cost (GPU direct)

— Multi-Dimensional distributed memory FFT

 requires all-to-all

 Various presentations here at GTC:

— Akira Nukada, Tokyo Institute of Technology, S0290 (Wed)

— Filippo Spiga, ICHEC, S0220 (Thu)

cuRAND

Random Number Generation on GPU

 Generating high quality random numbers in parallel is hard

— Don’t do it yourself, use a library!

 Large suite of generators and distributions

— XORWOW, MRG323ka, MTGP32, (scrambled) Sobol

— uniform, normal, log-normal

— Single and double precision

 Two APIs for cuRAND

— Host: Ideal when generating large batches of RNGs on GPU

— Device: Ideal when RNGs need to be generated inside a kernel

cuRAND: Host vs Device API

 Host API

 #include “curand.h”

 curandCreateGenarator(&gen, CURAND_RNG_PSEUDO_DEFAULT);

 curandGenerateUniform(gen, d_data, n);

 Device API

 #include “curand_kernel.h”

 __global__ void generate_kernel(curandState *state) {

 int id = threadIdx.x + blockIdx.x * 64;

 x = curand(&state[id]);

 }

Generate set of

random

numbers at once

Generate random

numbers per thread

cuRAND Performance compared to Intel MKL

Performance may vary based on OS version and motherboard configuration

•cuRAND 4.1, Tesla M2090 (Fermi), ECC on

• MKL 10.2.3, TYAN FT72-B7015 Xeon x5680 @

3.33 GHz

Next steps..

Thurst: STL-like CUDA Template Library

 Device and host vector class

 thrust::host_vector<float> H(10, 1.f);

 thrust::device_vector<float> D = H;

Iterators

 thrust::fill(D.begin(), D.begin()+0, 42.f);

 float* raw_ptr = thrust::raw_pointer_cast(D);

 Algorithms

Sort, reduce, transformation, scan, ..

 thrust::transform(D1.begin(), D1.begin(), D2.begin(), D2.end(),

 thrust::plus<float>()); // D2 = D1 + D2

C++ STL Features
for CUDA

S0602 (Tue),

S0653 (Thu)

http://code.google.com/p/thrust/downloads/list

Using Libraries with OpenACC

Libraries often require explicit device data

Device data transparent in OpenACC

Inform OpenAcc about device variables with data deviceptr

clause

cufftExecPlan(plan, d_signal,d _signal)

…

#pragma acc data deviceptr(d_signal)

#pragma acc loop independent

for(i=0; i<n; i++) d_signal[i] = 2 * d_signal[i];

 Session S0622 (Thu)

Explore the CUDA (Libraries) Ecosystem

CUDA Tools and Ecosystem

described in detail on NVIDIA

Developer Zone:

developer.nvidia.com/cuda-

tools-ecosystem

Attend GTC library talks

http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem
http://developer.nvidia.com/cuda-tools-ecosystem

Summary

 CUDA libraries offer a broad range of high-performance functions

 3rd party libraries provide extended functionality

 By sticking to commonly used interfaces, legacy code can be

moved quickly to GPUs (“drop-in”)

 Libraries enable developers to focus on their core IP

 Libraries interact well with other parts of the CUDA ecosystem

Thank you

